Skip to main content

Power Electronics Converters for an Electric Vehicle Fast Charging Station with Storage Capability

  • Conference paper
  • First Online:
Green Energy and Networking (GreeNets 2018)

Abstract

Fast charging stations are a key element for the wide spreading of Electric Vehicles (EVs) by reducing the charging time to a range between 20 to 40 min. However, the integration of fast charging stations causes some adverse impacts on the Power Grid (PG), namely by the huge increase in the peak demand during short periods of time. This paper addresses the design of the power electronics converters for an EV DC fast charging station with local storage capability and easy interface of renewables. In the proposed topology, the energy storage capability is used to smooth the peak power demand, inherent to fast charging systems, and contributes to the stability of the PG. When integrated in a Smart Grid, the proposed topology may even return some of the stored energy back to the power grid, when necessary. The accomplishment of the aforementioned objectives requires a set of different power electronics converters that are described and discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajashekara, K.: Present status and future trends in electric vehicle propulsion technologies. IEEE J. Emerg. Sel. Top. Power Electron. 1(1), 3–10 (2013)

    Article  Google Scholar 

  2. Emadi, A., Lee, Y.J., Rajashekara, K.: Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans. Ind. Electron. 55, 2237–2245 (2008)

    Article  Google Scholar 

  3. Gjelaj, M., Træholt, C., Hashemi Toghroljerdi, S., Andersen, P.B.: Optimal design of DC fast-charging stations for EVs in low voltage grids. In: Proceedings of 2017 IEEE Transportation Electrification Conference (2017). https://doi.org/10.1109/itec.2017.7993352

  4. Raghavan, S.S., Khaligh, A.: Electrification potential factor: energy-based value proposition analysis of plug-in hybrid electric vehicles. IEEE Trans. Veh. Technol. 61(3), 1052–1059 (2012)

    Article  Google Scholar 

  5. Shao, S., Pipattanasomporn, M., Rahman, S.: Grid integration of electric vehicles and demand response with customer choice. IEEE Trans. Smart Grid 3(1), 543–550 (2012)

    Article  Google Scholar 

  6. Lopes, J.A.P., Soares, F., Almeida, P.M.R.: Integration of electric vehicles in the electric power systems. Proc. IEEE 99(1), 168–183 (2011)

    Article  Google Scholar 

  7. Güngör, V.C., et al.: Smart grid technologies: communication technologies and standards. IEEE Trans. Ind. Inform. 7(4), 529–539 (2011)

    Article  Google Scholar 

  8. Monteiro, V., Pinto, J.G., Afonso, J.L.: Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes. IEEE Trans. Veh. Technol. 65(3), 1007–1020 (2016). https://doi.org/10.1109/tvt.2015.2481005. ISSN: 0018-9545

    Article  Google Scholar 

  9. Pinto, J.G., Monteiro, V., Gonçalves, H., Afonso, J.L.: Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode. IEEE Trans. Veh. Technol. 63(3), 1104–1116 (2014). https://doi.org/10.1109/tvt.2013.2283531. ISSN 0018-9545

    Article  Google Scholar 

  10. Bai, S., Lukic, S.M.: Unified active filter and energy storage system for an MW electric vehicle charging station. IEEE Trans. Power Electron. 28(12), 5793–5803 (2013)

    Article  Google Scholar 

  11. Efacec QC 50 Quick Charger: Efacec - Portfolio of Products (2008)

    Google Scholar 

  12. Monteiro, V., Sepúlveda, M.J., Aparício Fernandes, J.C., Pinto, J.G., Afonso, J.L.: Evaluation of the introduction of electric vehicles in the power grid—a study for the Island of Maio in Cape Verde. In: Garrido, P., Soares, F., Moreira, A.P. (eds.) CONTROLO 2016. LNEE, vol. 402, pp. 713–724. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43671-5_60

    Chapter  Google Scholar 

  13. Vasiladiotis, M., Rufer, A., Béguin, A.: Modular converter architecture for medium voltage ultra fast EV charging stations: global system considerations. In: 2012 IEEE International Electric Vehicle Conference, Greenville, SC, pp. 1–7 (2012). https://doi.org/10.1109/ievc.2012.6183228

  14. Gjelaj, M., Træholt, C., Hashemi, S., Andersen, P.B.: DC fast-charging stations for EVs controlled by a local battery storage in low voltage grids. In: 2017 IEEE Manchester PowerTech, Manchester, pp. 1–6 (2017). https://doi.org/10.1109/ptc.2017.7980985

  15. Shariff, S., Alam, M.S., Ahmad, F., Khan, W.: Optimal electric vehicle fast charging infrastructure. In: Proceedings of the Intelligent Transportation Society of America 2018 Annual Meeting, Detroit, Michigan, 4–7 June 2018

    Google Scholar 

  16. Monteiro, V., Pinto, J.G., Afonso, J.L.: Experimental validation of a three-port integrated topology to interface electric vehicles and renewables with the electrical grid. IEEE Trans. Ind. Inform. 14(6), 2364–2374 (2018). https://doi.org/10.1109/tii.2018.2818174

    Article  Google Scholar 

  17. Youssef, C., Fatima, E., Najia, E., Chakib, A.: A technological review on electric vehicle DC charging stations using photovoltaic sources. In: IOP Conference Series: Materials Science and Engineering, vol. 353 (2018). https://doi.org/10.1088/1757-899x/353/1/012014

    Article  Google Scholar 

  18. ABB: ABB and partners to evaluate the reuse of the Nissan LEAF battery for commercial purposes, Zurich, Switzerland, January 2012

    Google Scholar 

  19. Pinto, J.G., Monteiro, V., Pedrosa, D., Afonso, J.L.: Economic assessment of a public DC charging station for electric vehicles with load shift capability. In: Proceedings of the 3rd International Conference on Energy and Environment: Bringing Together Economics and Engineering – ICEE 2017, Porto, Portugal, 29–30 June 2017, pp. 460–466 (2017). ISBN:978-972-95396-9-5, ISSN:2183-3982

    Google Scholar 

  20. Rolim, L.G.B., Costa, D.R., Aredes, M.: Analysis and software implementation of a robust synchronizing PLL circuit based on the pq theory. IEEE Trans. Ind. Electron. 53(6), 1919–1926 (2006)

    Article  Google Scholar 

  21. Orts-Grau, S., Gimeno-Sales, F.J., Abellan-Garcia, A., Segui-Chilet, S., Alfonso-Gil, J.C.: Improved shunt active power compensator for IEEE Standard 1459 compliance. IEEE Trans. Power Deliv. 25(4), 2692–2701 (2010)

    Article  Google Scholar 

  22. Munoz, A.R., Lipo, T.A.: On-line dead-time compensation technique for open-loop PWM-VSI drives. IEEE Trans. Power Electron. 14(4), 683–689 (1999)

    Article  Google Scholar 

  23. Qiang, J., Yang, L., Ao, G., Zhong, H.: Battery management system for electric vehicle application. In: 2006 IEEE International Conference on Vehicular Electronics and Safety, Shanghai, pp. 134–138 (2006). https://doi.org/10.1109/icves.2006.371569

  24. Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and by FCT within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – COMPETE 2020 Programme, and FCT within project SAICTPAC/0004/2015‐POCI‐01‐0145–FEDER‐016434 and FCT within project PTDC/EEI-EEE/28813/2017. Mr. Luis A. M. Barros is supported by the doctoral scholarship PD/BD/143006/2018 granted by the Portuguese FCT agency. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinto, J.G. et al. (2019). Power Electronics Converters for an Electric Vehicle Fast Charging Station with Storage Capability. In: Afonso, J., Monteiro, V., Pinto, J. (eds) Green Energy and Networking. GreeNets 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 269. Springer, Cham. https://doi.org/10.1007/978-3-030-12950-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12950-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12949-1

  • Online ISBN: 978-3-030-12950-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics