Skip to main content

Nanopesticides and Nanosensors in Agriculture

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanotechnology is a conspicuous technology of the modern decade, and it is significantly applicable in electrical, electronics, optical, food packing, sensing, medical and energy fields. Similarly, agriculture is also gratified by the use of nanotechnology in the form of nanopesticides and nanosensors with great hope for future sustainability. This chapter covers the effect of nanopesticides, nanoformulations, nanoencapsulation, detection of pesticides, ecotoxicology and current challenges of sustainability that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adak T, Kumar J, Shakil N, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B 47(3):217–225

    Article  CAS  PubMed  Google Scholar 

  • Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014) Nanotechnology, a new frontier in Agriculture. Adv Life Sci 1:129–138

    Google Scholar 

  • Anjali C, Khan SS, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nanoscale copper in the soil plant system toxicity and underlying potential mechanisms. Environ Res 138:306–325

    Article  CAS  PubMed  Google Scholar 

  • Anwunobi AP, Emeje MO (2011) Recent applications of natural polymers in nanodrug delivery. J Nanomedic Nanotechnol S4:002. https://doi.org/10.4172/2157-7439.S4-002

    Article  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Bajpai J, Bajpai A, Mishra S (2006) Dynamics of controlled release of potassium nitrate from a highly swelling binary biopolymeric blend of alginate and pectin. J Macromol Sci A 43(1):165–186

    Article  CAS  Google Scholar 

  • Bang S, Hwang I, Yu Y, Kwon H, Kim D, Park H (2011) Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. J Microencapsul 28(7):595–604

    Article  CAS  PubMed  Google Scholar 

  • Basha S, Sarma B, Singh D, Annapurna K, Singh U (2006) Differential methods of inoculation of plant growth-promoting rhizobacteria induce synthesis of phenylalanine ammonia-lyase and phenolic compounds differentially in chickpea. Folia Microbiol 51(5):463–468

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Bogue R (2009) Nanosensors: a review of recent research. Sensor Rev 29(4):310–315

    Article  Google Scholar 

  • Bollag JM, Myers CJ, Minard RD (1992) Biological and chemical interactions of pesticides with soil organic matter. Sci Total Environ 123:205–217

    Article  PubMed  Google Scholar 

  • Bossi R, Vejrup KV, Mogensen BB, Asman WA (2002) Analysis of polar pesticides in rainwater in Denmark by liquid chromatography-tandem mass spectrometry. J Chromatogr A 957(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  CAS  PubMed  Google Scholar 

  • Clemente Z, Grillo R, Jonsson M, Santos N, Feitosa L, Lima R, Fraceto L (2014) Ecotoxicological evaluation of poly (ε-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotech 14(7):4911–4917

    Article  CAS  Google Scholar 

  • Cromwell W, Yang J, Starr J, Jo Y-K (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermuda grass. J Nematol 46(3):261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha S, Fernandes J, Oliveira M (2011) Pesticides-strategies for pesticides analysis. InTech, Rijeka

    Google Scholar 

  • de Oliveira JL, Campos EVR, Gonçalves da Silva CM, Pasquoto T, Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63(2):422–432

    Article  PubMed  Google Scholar 

  • Dhaliwal G, Jindal V, Dhawan A (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37(1):1–7

    Google Scholar 

  • Forim MR, Costa ES, da Silva MFGF, Fernandes JB, Mondego JM, Boiça Junior AL (2013) Development of a new method to prepare nano-/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem 61(38):9131–9139

    Article  CAS  PubMed  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5(4):382–386

    Article  CAS  PubMed  Google Scholar 

  • Garratt J, Kennedy A (2006) Use of models to assess the reduction in contamination of water bodies by agricultural pesticides through the implementation of policy instruments: a case study of the voluntary initiative in the UK. Pest Manag Sci 62(12):1138–1149

    Article  CAS  PubMed  Google Scholar 

  • Gheorghe I, Popa M, Marutescu L, Saviuc C, Lazar V, Chifiriuc MC (2017) Lessons from inter-regn communication for the development of novel, ecofriendly pesticides. In: Alexandru Grumezescu (ed) New pesticides and soil sensors. Elsevier, p 1–45

    Google Scholar 

  • Gong J, Miao X, Zhou T, Zhang L (2011) An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction. Talanta 85(3):1344–1349

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Yang Q, Yan W, Li B, Qian K, Li T, Xiao W, He L (2014) Controlled release of acetochlor from poly (butyl methacrylate-diacetone acrylamide) based formulation prepared by nanoemulsion polymerisation method and evaluation of the efficacy. Int J Environ Anal Chem 94(10):1001–1012

    Article  CAS  Google Scholar 

  • İpek Y, Dinçer H, Koca A (2014) Selective electrochemical pesticide sensor modified with “click electrochemistry” between cobaltphthalocyanine and 4-azidoaniline. J Electrochem Soc 161(9):B183–B190

    Article  Google Scholar 

  • Jamal M, Moharramipour S, Zandi M, Negahban M (2013) Efficacy of nanoencapsulated formulation of essential oil from Carum copticum seeds on feeding behavior of Plutella xylostella (Lep.: Plutellidae). J Entomol Soc Iran 33(152):23–31

    Google Scholar 

  • Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S 22(3):321–361

    Google Scholar 

  • Jampílek J, Kráľová K (2017) Nanopesticides: preparation, targeting, and controlled release. In: Alexandru Mihai Grumezescu (ed) New pesticides and soil sensors. Elsevier, p 81–127

    Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  • Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Kim N, Park IS, Kim DK (2007) High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor. Biosens Bioelectron 22(8):1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Krieger R (2010) Hayes’ handbook of pesticide toxicology, vol 1. Academic, London

    Google Scholar 

  • Laborde A (2008) Pesticides. World Health Organization, Geneva

    Google Scholar 

  • Li H, Li F, Han C, Cui Z, Xie G, Zhang A (2010) Highly sensitive and selective tryptophan colorimetric sensor based on 4, 4-bipyridine-functionalized silver nanoparticles. Sens Actuators B Chem 145(1):194–199

    Article  CAS  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275

    Article  CAS  Google Scholar 

  • Llorent-Martínez EJ, Ortega-Barrales P, Fernández-de Córdova ML, Ruiz-Medina A (2011) Trends in flow-based analytical methods applied to pesticide detection: a review. Anal Chim Acta 684(1–2):30–39

    Article  Google Scholar 

  • Margulis-Goshen K, Magdassi S (2013) Nanotechnology: an advanced approach to the development of potent insecticides. In: Ishaaya, Isaac, Palli, Subba Reddy, Horowitz, A. Rami (Eds.) Advanced technologies for managing insect pests. Springer, p 295–314

    Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh H (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohanraj V, Chen Y (2006) Nanoparticles-a review. Trop J Pharm Res 5(1):561–573

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Namasivayam KRS, Aruna A, Gokila (2014) Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotechnol 9(9):19–27

    Google Scholar 

  • National Research Council (1993) Pesticides in the diets of infants and children. National Academies Press, Washington, DC. https://doi.org/10.17226/2126

    Book  Google Scholar 

  • Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4(1):39–47

    Article  CAS  Google Scholar 

  • Nisar K, Kumar J, Shakil NA, Pankaj WS, Parmar BS (2009) Controlled release formulations of acephate: water and soil release kinetics. J Environ Sci Health B 44(6):533–537

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panáček A, Kvitek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná TJ, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    Article  PubMed  Google Scholar 

  • Pant M, Dubey S, Patanjali P, Naik S, Sharma S (2014) Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int Biodeterior Biodegrad 91:119–127

    Article  CAS  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302

    Article  Google Scholar 

  • Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215

    Article  CAS  PubMed  Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545

    Article  PubMed  Google Scholar 

  • Perlatti B, de Souza Bergo PcLs, Fernandes JB, Forim MR (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Stanislav Trdan (ed) Insecticides-development of safer and more effective technologies. InTech

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Pronczuk J, Akre J, Moy G, Vallenas C (2002) Global perspectives in breast milk contamination: infectious and toxic hazards. Environ Health Perspect 110(6):A349–A351

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragaei M, Sabry A-kH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3:528–545

    Google Scholar 

  • Rudzinski W, Dave A, Vaishnav U, Kumbar S, Kulkarni A, Aminabhavi T (2002) Hydrogels as controlled release devices in agriculture. Des Monomers Polym 5(1):39–65

    Article  CAS  Google Scholar 

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62(21):4833–4838

    Article  CAS  PubMed  Google Scholar 

  • Shaviv A (2001) Advances in controlled-release fertilizers. Adv Agron 71:1–49. https://doi.org/10.1016/S0065-2113(01)71011-5

    Article  CAS  Google Scholar 

  • Soundararajan R (2014) Pesticides: advances in chemical and botanical pesticides. InTech

    Google Scholar 

  • Štajnbaher D, Zupančič-Kralj L (2003) Multiresidue method for determination of 90 pesticides in fresh fruits and vegetables using solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 1015(1–2):185–198

    Article  PubMed  Google Scholar 

  • Tano J (2011) Identity, physical and chemical properties of pesticides. In: Margarita Stoytcheva (ed) Pesticides in the modern world-trends in pesticides analysis. InTech

    Google Scholar 

  • United States Environmental Protection Agency (2016) What are biopesticides?

    Google Scholar 

  • Vargas-Bernal R, Rodríguez-Miranda E, Herrera-Pérez G (2012) Evolution and expectations of enzymatic biosensors for pesticides. In: R.P. Soundararajan (ed) Pesticides-advances in chemical and botanical pesticides. InTech

    Google Scholar 

  • Velmurugan N, Kumar GG, Han SS, Nahm KS, Lee YS (2009) Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iran Polym J 18(5):383–392

    CAS  Google Scholar 

  • Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 24(9):2772–2777

    Article  CAS  PubMed  Google Scholar 

  • Yadav L, Tripathi RM, Prasad R, Pudake RN, Mittal J (2017) Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng 9(1):9–14

    Article  CAS  Google Scholar 

  • Yang F-L, Li X-G, Zhu F, Lei C-L (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yin YH, Guo QM, Yun H, Wang LJ, Wan SQ (2012) Preparation, characterization and nematicidal activity of lansiumamide B nano-capsules. J Integr Agric 11(7):1151–1158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boddula, R., Trivedi, U., Pothu, R., Rajput, M.S., Saran, A. (2019). Nanopesticides and Nanosensors in Agriculture. In: Prasad, R. (eds) Plant Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-12496-0_8

Download citation

Publish with us

Policies and ethics