Skip to main content

Nanocarriers and Immune Cells

  • Chapter
  • First Online:
Biological Responses to Nanoscale Particles

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Nanocarriers (NCs) have a high potential as target-specific drug-delivery system. Especially immune cells are a prime target in the nanoparticle-cell interaction. Uptake into the correct subtype of immune cells is crucial. Therefore uptake processes as well as intracellular processing is of utmost importance. The so-called protein corona heavily affects the interaction with immune cells which can decide the fate of the NC for degradation. On a wider perspective also nanoparticles which were not intentionally made for the transport of drugs get in contact with immune cells e.g. in the lungs. These immune cells are then trying to degrade these foreign materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boraschi, D., Costantino, L., Italiani, P.: Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine (Lond.) 7(1), 121–131 (2012)

    Google Scholar 

  2. Walkey, C.D., Chan, W.C.: Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41(7), 2780–2799 (2012)

    Google Scholar 

  3. Hellstrand, E., Lynch, I., Andersson, A., Drakenberg, T., Dahlback, B., Dawson, K.A., et al.: Complete high-density lipoproteins in nanoparticle corona. FEBS J. 276(12), 3372–3381 (2009)

    Google Scholar 

  4. Milani, S., Bombelli, F.B., Pitek, A.S., Dawson, K.A., Radler, J.: Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6(3), 2532–2541 (2012)

    Google Scholar 

  5. Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., et al.: Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 104(7), 2050–2055 (2007)

    ADS  Google Scholar 

  6. Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U.S.A. 105(38), 14265–14270 (2008)

    ADS  Google Scholar 

  7. Maiorano, G., Sabella, S., Sorce, B., Brunetti, V., Malvindi, M.A., Cingolani, R., et al.: Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4(12), 7481–7491 (2010)

    Google Scholar 

  8. Ghavami, M., Rezaei, M., Ejtehadi, R., Lotfi, M., Shokrgozar, M.A., Abd Emamy, B., et al.: Physiological temperature has a crucial role in amyloid beta in the absence and presence of hydrophobic and hydrophilic nanoparticles. ACS Chem. Neurosci. 4(3), 375–378 (2013)

    Google Scholar 

  9. Mahmoudi, M., Abdelmonem, A.M., Behzadi, S., Clement, J.H., Dutz, S., Ejtehadi, M.R., et al.: Temperature: the “ignored” factor at the NanoBio interface. ACS Nano 7(8), 6555–6562 (2013)

    Google Scholar 

  10. Limbach, L.K., Wick, P., Manser, P., Grass, R.N., Bruinink, A., Stark, W.J.: Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 41(11), 4158–4163 (2007)

    ADS  Google Scholar 

  11. Byrne, B., Donohoe, G.G., O’Kennedy, R.: Sialic acids: carbohydrate moieties that influence the biological and physical properties of biopharmaceutical proteins and living cells. Drug Discov. Today. 12(7–8), 319–326 (2007)

    Google Scholar 

  12. Kah, J.C., Wong, K.Y., Neoh, K.G., Song, J.H., Fu, J.W., Mhaisalkar, S., et al.: Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. J. Drug Target. 17(3), 181–193 (2009)

    Google Scholar 

  13. Lin, S.Y., Hsu, W.H., Lo, J.M., Tsai, H.C., Hsiue, G.H.: Novel geometry type of nanocarriers mitigated the phagocytosis for drug delivery. J. Control. Release 154(1), 84–92 (2011)

    Google Scholar 

  14. Janeway Jr., C.A., Medzhitov, R.: Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002)

    Google Scholar 

  15. Steinman, R.M., Banchereau, J.: Taking dendritic cells into medicine. Nature 449(7161), 419–426 (2007)

    ADS  Google Scholar 

  16. Janeway, C.A.: How the immune system works to protect the host from infection: a personal view. Proc. Natl. Acad. Sci. U.S.A. 98(13), 7461–7468 (2001)

    ADS  Google Scholar 

  17. Dranoff, G.: Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4(1), 11–22 (2004)

    Google Scholar 

  18. Zinkernagel, R.M.: On natural and artificial vaccinations. Annu. Rev. Immunol. 21, 515–546 (2003)

    Google Scholar 

  19. Jenne, C.N., Liao, S., Singh, B.: Neutrophils: multitasking first responders of immunity and tissue homeostasis. Cell Tissue Res. (2018)

    Google Scholar 

  20. Mayadas, T.N., Cullere, X., Lowell, C.A.: The multifaceted functions of neutrophils. Annu. Rev. Pathol. 9, 181–218 (2014)

    Google Scholar 

  21. Lin, A., Lore, K.: Granulocytes: new members of the antigen-presenting cell family. Front. Immunol. 8, 1781 (2017)

    Google Scholar 

  22. Siracusa, M.C., Kim, B.S., Spergel, J.M., Artis, D.: Basophils and allergic inflammation. J. Allergy Clin. Immunol. 132(4), 789–801; quiz 788 (2013)

    Google Scholar 

  23. Guilliams, M., Ginhoux, F., Jakubzick, C., Naik, S.H., Onai, N., Schraml, B.U., et al.: Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14(8), 571–578 (2014)

    Google Scholar 

  24. Geissmann, F., Manz, M.G., Jung, S., Sieweke, M.H., Merad, M., Ley, K.: Development of monocytes, macrophages, and dendritic cells. Science 327(5966), 656–661 (2010)

    ADS  Google Scholar 

  25. Mosser, D.M., Edwards, J.P.: Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12), 958–969 (2008)

    Google Scholar 

  26. Verreck, F.A., de Boer, T., Langenberg, D.M., Hoeve, M.A., Kramer, M., Vaisberg, E., et al.: Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl. Acad. Sci. U.S.A. 101(13), 4560–4565 (2004)

    ADS  Google Scholar 

  27. Murray, P.J., Allen, J.E., Biswas, S.K., Fisher, E.A., Gilroy, D.W., Goerdt, S., et al.: Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1), 14–20 (2014)

    Google Scholar 

  28. Murray, P.J., Wynn, T.A.: Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11(11), 723–737 (2011)

    Google Scholar 

  29. Buckwalter, M.R., Albert, M.L.: Orchestration of the immune response by dendritic cells. Curr. Biol. 19(9), R355–R361 (2009)

    Google Scholar 

  30. Villadangos, J.A., Schnorrer, P.: Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol. 7(7), 543–555 (2007)

    Google Scholar 

  31. Heath, W.R., Belz, G.T., Behrens, G.M., Smith, C.M., Forehan, S.P., Parish, I.A., et al.: Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9–26 (2004)

    Google Scholar 

  32. Niess, J.H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B.A., et al.: CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307(5707), 254–258 (2005)

    ADS  Google Scholar 

  33. Cyster, J.G.: Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J. Exp. Med. 189(3), 447–450 (1999)

    Google Scholar 

  34. Itano, A.A., Jenkins, M.K.: Antigen presentation to naive CD4 T cells in the lymph node. Nat. Immunol. 4(8), 733–739 (2003)

    Google Scholar 

  35. Randolph, G.J., Angeli, V., Swartz, M.A.: Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5(8), 617–628 (2005)

    Google Scholar 

  36. Gordon, J.R., Ma, Y., Churchman, L., Gordon, S.A., Dawicki, W.: Regulatory dendritic cells for immunotherapy in immunologic diseases. Front. Immunol. 5, 7 (2014)

    Google Scholar 

  37. Kaisho, T., Akira, S.: Regulation of dendritic cell function through Toll-like receptors. Curr. Mol. Med. 3(4), 373–385 (2003)

    Google Scholar 

  38. Krieg, A.M.: CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002)

    Google Scholar 

  39. Verthelyi, D., Zeuner, R.A.: Differential signaling by CpG DNA in DCs and B cells: not just TLR9. Trends Immunol. 24(10), 519–522 (2003)

    Google Scholar 

  40. Manzotti, C.N., Liu, M.K., Burke, F., Dussably, L., Zheng, Y., Sansom, D.M.: Integration of CD28 and CTLA-4 function results in differential responses of T cells to CD80 and CD86. Eur. J. Immunol. 36(6), 1413–1422 (2006)

    Google Scholar 

  41. Odobasic, D., Kitching, A.R., Tipping, P.G., Holdsworth, S.R.: CD80 and CD86 costimulatory molecules regulate crescentic glomerulonephritis by different mechanisms. Kidney Int. 68(2), 584–594 (2005)

    Google Scholar 

  42. Lenschow, D.J., Ho, S.C., Sattar, H., Rhee, L., Gray, G., Nabavi, N., et al.: Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J. Exp. Med. 181(3), 1145–1155 (1995)

    Google Scholar 

  43. Xiang, J., Gu, X., Qian, S., Chen, Z.: Graded function of CD80 and CD86 in initiation of T-cell immune response and cardiac allograft survival. Transpl. Int. 21(2), 163–168 (2008)

    Google Scholar 

  44. Probst, H.C., McCoy, K., Okazaki, T., Honjo, T., van den Broek, M.: Resting dendritic cells induce peripheral CD8 + T cell tolerance through PD-1 and CTLA-4. Nat. Immunol. 6(3), 280–286 (2005)

    Google Scholar 

  45. Hawiger, D., Inaba, K., Dorsett, Y., Guo, M., Mahnke, K., Rivera, M., et al.: Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194(6), 769–779 (2001)

    Google Scholar 

  46. Luo, X., Tarbell, K.V., Yang, H., Pothoven, K., Bailey, S.L., Ding, R., et al.: Dendritic cells with TGF-beta1 differentiate naive CD4+ CD25 T cells into islet-protective Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A. 104(8), 2821–2826 (2007)

    ADS  Google Scholar 

  47. Pulendran, B., Smith, J.L., Caspary, G., Brasel, K., Pettit, D., Maraskovsky, E., et al.: Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Acad. Sci. U.S.A. 96(3), 1036–1041 (1999)

    ADS  Google Scholar 

  48. Maldonado-Lopez, R., De Smedt, T., Michel, P., Godfroid, J., Pajak, B., Heirman, C., et al.: CD8 alpha(+) and CD8 alpha(−) subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189(3), 587–592 (1999)

    Google Scholar 

  49. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F., Lanzavecchia, A.: Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6(8), 769–776 (2005)

    Google Scholar 

  50. Seder, R.A., Paul, W.E., Davis, M.M., Fazekas de St Groth, B.: The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 176(4), 1091–1098 (1992)

    Google Scholar 

  51. LeibundGut-Landmann, S., Gross, O., Robinson, M.J., Osorio, F., Slack, E.C., Tsoni, S.V., et al.: Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8(6), 630–638 (2007)

    Google Scholar 

  52. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J., Enk, A.H.: Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192(9), 1213–1222 (2000)

    Google Scholar 

  53. Badovinac, V.P., Messingham, K.A.N., Jabbari, A., Haring, J.S., Harty, J.T.: Accelerated CD8(+) T-cell memory and prime-boost response after dendritic-cell vaccination. Nat. Med. 11(7), 748–756 (2005)

    Google Scholar 

  54. Trumpfheller, C., Finke, J.S., Lopez, C.B., Moran, T.M., Moltedo, B., Soares, H., et al.: Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J. Exp. Med. 203(3), 607–617 (2006)

    Google Scholar 

  55. Amer, M.G., Mazen, N.F., Mohamed, A.M.: Caffeine intake decreases oxidative stress and inflammatory biomarkers in experimental liver diseases induced by thioacetamide: biochemical and histological study. Int. J. Immunopathol. Pharmacol. 30(1), 13–24 (2017)

    Google Scholar 

  56. Lunin, S.M., Khrenov, M.O., Glushkova, O.V., Vinogradova, E.V., Yashin, V.A., Fesenko, E.E., et al.: Extrathymic production of thymulin induced by oxidative stress, heat shock, apoptosis, or necrosis. Int. J. Immunopathol. Pharmacol. 30(1), 58–69 (2017)

    Google Scholar 

  57. Fleshner, M., Crane, C.R.: Exosomes, DAMPs and miRNA: features of stress physiology and immune homeostasis. Trends Immunol. 38(10), 768–776 (2017)

    Google Scholar 

  58. Fleshner, M.: Stress-evoked sterile inflammation, danger associated molecular patterns (DAMPs), microbial associated molecular patterns (MAMPs) and the inflammasome. Brain Behav. Immun. 27, 1–7 (2013)

    Google Scholar 

  59. Rock, K.L., Latz, E., Ontiveros, F., Kono, H.: The sterile inflammatory response. Annu. Rev. Immunol. 28, 321–342 (2010)

    Google Scholar 

  60. Fleshner, M., Nguyen, K.T., Cotter, C.S., Watkins, L.R., Maier, S.F.: Acute stressor exposure both suppresses acquired immunity and potentiates innate immunity. Am. J. Physiol. 275(3 Pt 2), R870–R878 (1998)

    Google Scholar 

  61. Campisi, J., Fleshner, M.: Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active rats. J. Appl. Physiol. (1985) 94(1):43–52 (2003)

    Google Scholar 

  62. Maslanik, T., Mahaffey, L., Tannura, K., Beninson, L., Greenwood, B.N., Fleshner, M.: The inflammasome and danger associated molecular patterns (DAMPs) are implicated in cytokine and chemokine responses following stressor exposure. Brain Behav. Immun. 28, 54–62 (2013)

    Google Scholar 

  63. Beninson, L.A., Brown, P.N., Loughridge, A.B., Saludes, J.P., Maslanik, T., Hills, A.K., et al.: Acute stressor exposure modifies plasma exosome-associated heat shock protein 72 (Hsp72) and microRNA (miR-142-5p and miR-203). PLoS ONE 9(9), e108748 (2014)

    ADS  Google Scholar 

  64. Rock, K.L., Lai, J.J., Kono, H.: Innate and adaptive immune responses to cell death. Immunol. Rev. 243(1), 191–205 (2011)

    Google Scholar 

  65. Chen, G.Y., Nunez, G.: Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10(12), 826–837 (2010)

    Google Scholar 

  66. Hernandez, C., Huebener, P., Schwabe, R.F.: Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene 35(46), 5931–5941 (2016)

    Google Scholar 

  67. Gallo, P.M., Gallucci, S.: The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol. 4, 138 (2013)

    Google Scholar 

  68. Dwivedi, P.D., Misra, A., Shanker, R., Das, M.: Are nanomaterials a threat to the immune system? Nanotoxicology 3(1), 19–26 (2009)

    Google Scholar 

  69. Dobrovolskaia, M.A., McNeil, S.E.: Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2(8), 469–478 (2007)

    ADS  Google Scholar 

  70. Thiele, L., Rothen-Rutishauser, B., Jilek, S., Wunderli-Allenspach, H., Merkle, H.P., Walter, E.: Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Control. Release 76(1–2), 59–71 (2001)

    Google Scholar 

  71. Foged, C., Brodin, B., Frokjaer, S., Sundblad, A.: Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298(2), 315–322 (2005)

    Google Scholar 

  72. Thiele, L., Merkle, H.P., Walter, E.: Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharm. Res. 20(2), 221–228 (2003)

    Google Scholar 

  73. Thiele, L., Diederichs, J.E., Reszka, R., Merkle, H.P., Walter, E.: Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells. Biomaterials 24(8), 1409–1418 (2003)

    Google Scholar 

  74. Muller, C., Schibli, R.: Prospects in folate receptor-targeted radionuclide therapy. Front Oncol. 3, 249 (2013)

    Google Scholar 

  75. Yameen, B., Choi, W.I., Vilos, C., Swami, A., Shi, J.J., Farokhzad, O.C.: Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 190, 485–499 (2014)

    Google Scholar 

  76. Low, P.S., Kularatne, S.A.: Folate-targeted therapeutic and imaging agents for cancer. Curr. Opin. Chem. Biol. 13(3), 256–262 (2009)

    Google Scholar 

  77. Xia, W., Hilgenbrink, A.R., Matteson, E.L., Lockwood, M.B., Cheng, J.X., Low, P.S.: A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood 113(2), 438–446 (2009)

    Google Scholar 

  78. Ross, J.F., Wang, H., Behm, F.G., Mathew, P., Wu, M., Booth, R., et al.: Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer 85(2), 348–357 (1999)

    Google Scholar 

  79. Low, P.S., Henne, W.A., Doorneweerd, D.D.: Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res. 41(1), 120–129 (2008)

    Google Scholar 

  80. Lu, Y., Sega, E., Leamon, C.P., Low, P.S.: Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Adv. Drug Deliv. Rev. 56(8), 1161–1176 (2004)

    Google Scholar 

  81. Danhier, F., Feron, O., Preat, V.: To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 148(2), 135–146 (2010)

    Google Scholar 

  82. van der Meel, R., Vehmeijer, L.J., Kok, R.J., Storm, G., van Gaal, E.V.: Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv. Drug Deliv. Rev. 65(10), 1284–1298 (2013)

    Google Scholar 

  83. Lurje, G., Lenz, H.J.: EGFR signaling and drug discovery. Oncology 77(6), 400–410 (2009)

    Google Scholar 

  84. Xia, T., Kovochich, M., Liong, M., Zink, J.I., Nel, A.E.: Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2(1), 85–96 (2008)

    Google Scholar 

  85. Loos, C., Syrovets, T., Musyanovych, A., Mailander, V., Landfester, K., Nienhaus, G.U., et al.: Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions. Beilstein J. Nanotechnol. 5, 2403–2412 (2014)

    Google Scholar 

  86. Sohaebuddin, S.K., Thevenot, P.T., Baker, D., Eaton, J.W., Tang, L.: Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol. 7, 22 (2010)

    Google Scholar 

  87. Lanone, S., Rogerieux, F., Geys, J., Dupont, A., Maillot-Marechal, E., Boczkowski, J., et al.: Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol. 6, 14 (2009)

    Google Scholar 

  88. Loh, M.L.: Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br. J. Haematol. 152(6), 677–687 (2011)

    Google Scholar 

  89. Kohro, T., Tanaka, T., Murakami, T., Wada, Y., Aburatani, H., Hamakubo, T., et al.: A comparison of differences in the gene expression profiles of phorbol 12-myristate 13-acetate differentiated THP-1 cells and human monocyte-derived macrophage. J. Atheroscler. Thromb. 11(2), 88–97 (2004)

    Google Scholar 

  90. Park, E.K., Jung, H.S., Yang, H.I., Yoo, M.C., Kim, C., Kim, K.S.: Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm. Res. 56(1), 45–50 (2007)

    Google Scholar 

  91. Schottler, S., Becker, G., Winzen, S., Steinbach, T., Mohr, K., Landfester, K., et al.: Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11(4), 372–377 (2016)

    ADS  Google Scholar 

  92. Schottler, S., Klein, K., Landfester, K., Mailander, V.: Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake. Nanoscale 8(10), 5526–5536 (2016)

    ADS  Google Scholar 

  93. Gillis, S., Watson, J.: Biochemical and biological characterization of lymphocyte regulatory molecules. V. Identification of an interleukin 2-producing human leukemia T cell line. J. Exp. Med. 152(6), 1709–1719 (1980)

    Google Scholar 

  94. Abraham, R.T., Weiss, A.: Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat. Rev. Immunol. 4(4), 301–308 (2004)

    Google Scholar 

  95. Astoul, E., Edmunds, C., Cantrell, D.A., Ward, S.G.: PI 3-K and T-cell activation: limitations of T-leukemic cell lines as signaling models. Trends Immunol. 22(9), 490–496 (2001)

    Google Scholar 

  96. Shan, X., Czar, M.J., Bunnell, S.C., Liu, P., Liu, Y., Schwartzberg, P.L., et al.: Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol. Cell. Biol. 20(18), 6945–6957 (2000)

    Google Scholar 

  97. Wang, X., Gjorloff-Wingren, A., Saxena, M., Pathan, N., Reed, J.C., Mustelin, T.: The tumor suppressor PTEN regulates T cell survival and antigen receptor signaling by acting as a phosphatidylinositol 3-phosphatase. J. Immunol. 164(4), 1934–1939 (2000)

    Google Scholar 

  98. Seminario, M.C., Wange, R.L.: Signaling pathways of D3-phosphoinositide-binding kinases in T cells and their regulation by PTEN. Semin. Immunol. 14(1), 27–36 (2002)

    Google Scholar 

  99. Mohr, K., Sommer, M., Baier, G., Schöttler, S., Okwieka, P., Tenzer, S., et al.: Aggregation behavior of polystyrene-nanoparticles in human blood serum and its impact on the in vivo distribution in mice. J. Nanomed. Nanotech. 5, 193 (2014)

    Google Scholar 

  100. Schmid, D., Park, C.G., Hartl, C.A., Subedi, N., Cartwright, A.N., Puerto, R.B., et al.: T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8(1), 1747 (2017)

    ADS  Google Scholar 

  101. Gros, A., Robbins, P.F., Yao, X., Li, Y.F., Turcotte, S., Tran, E., et al.: PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124(5), 2246–2259 (2014)

    Google Scholar 

  102. Gros, A., Parkhurst, M.R., Tran, E., Pasetto, A., Robbins, P.F., Ilyas, S., et al.: Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22(4), 433–438 (2016)

    Google Scholar 

  103. Zolnik, B.S., Gonzalez-Fernandez, A., Sadrieh, N., Dobrovolskaia, M.A.: Nanoparticles and the immune system. Endocrinology 151(2), 458–465 (2010)

    Google Scholar 

  104. Muller, L.K., Simon, J., Schottler, S., Landfester, K., Mailander, V., Mohr, K.: Pre-coating with protein fractions inhibits nano-carrier aggregation in human blood plasma. RSC Adv. 6(99), 96495–96509 (2016)

    Google Scholar 

  105. Ahmed, T.A., Aljaeid, B.M.: Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Dev. Ther. 10, 483–507 (2016)

    Google Scholar 

  106. Owens, D.E., Peppas, N.A.: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307(1), 93–102 (2006)

    Google Scholar 

  107. Andersson, L.I., Hellman, P., Eriksson, H.: Receptor-mediated endocytosis of particles by peripheral dendritic cells. Hum. Immunol. 69(10), 625–633 (2008)

    Google Scholar 

  108. Tabata, Y., Ikada, Y.: Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers. J. Biomed. Mater. Res. 22(10), 837–858 (1988)

    Google Scholar 

  109. Guo, S.T., Huang, L.: Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy. J. Nanomater. (2011)

    Google Scholar 

  110. Wei, W., Ma, G.H., Wang, L.Y., Wu, J., Su, Z.G.: Hollow quaternized chitosan microspheres increase the therapeutic effect of orally administered insulin. Acta Biomater. 6(1), 205–209 (2010)

    Google Scholar 

  111. Nagamoto, T., Hattori, Y., Takayama, K., Maitani, Y.: Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm. Res. 21(4), 671–674 (2004)

    Google Scholar 

  112. Jiang, H.L., Kang, M.L., Quan, J.S., Kang, S.G., Akaike, T., Yoo, H.S., et al.: The potential of mannosylated chitosan microspheres to target macrophage mannose receptors in an adjuvant-delivery system for intranasal immunization. Biomaterials 29(12), 1931–1939 (2008)

    Google Scholar 

  113. Kang, M.L., Jiang, H.L., Kang, S.G., Guo, D.D., Lee, D.Y., Cho, C.S., et al.: Pluronic F127 enhances the effect as an adjuvant of chitosan microspheres in the intranasal delivery of Bordetella bronchiseptica antigens containing dermonecrotoxin. Vaccine 25(23), 4602–4610 (2007)

    Google Scholar 

  114. Ferin, J., Oberdorster, G., Soderholm, S.C., Gelein, R.: Pulmonary tissue access of ultrafine particles. J. Aerosol. Med. 4(1), 57–68 (1991)

    Google Scholar 

  115. Huang, Y.C., Vieira, A., Huang, K.L., Yeh, M.K., Chiang, C.H.: Pulmonary inflammation caused by chitosan microparticles. J. Biomed. Mater. Res. A 75(2), 283–287 (2005)

    Google Scholar 

  116. Donaldson, K., Poland, C.A., Schins, R.P.: Possible genotoxic mechanisms of nanoparticles: criteria for improved test strategies. Nanotoxicology 4, 414–420 (2010)

    Google Scholar 

  117. Przybytkowski, E., Behrendt, M., Dubois, D., Maysinger, D.: Nanoparticles can induce changes in the intracellular metabolism of lipids without compromising cellular viability. FEBS J. 276(21), 6204–6217 (2009)

    Google Scholar 

  118. Saptarshi, S.R., Feltis, B.N., Wright, P.F.A., Lopata, A.L.: Investigating the immunomodulatory nature of zinc oxide nanoparticles at sub-cytotoxic levels in vitro and after intranasal instillation in vivo. J. Nanobiotechnol. 13 (2015)

    Google Scholar 

  119. Kawata, K., Osawa, M., Okabe, S.: In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 43(15), 6046–6051 (2009)

    ADS  Google Scholar 

  120. Dworak, N., Wnuk, M., Zebrowski, J., Bartosz, G., Lewinska, A.: Genotoxic and mutagenic activity of diamond nanoparticles in human peripheral lymphocytes in vitro. Carbon 68, 763–776 (2014)

    Google Scholar 

  121. Smith, M.J., Brown, J.M., Zamboni, W.C., Walker, N.J.: From immunotoxicity to nanotherapy: the effects of nanomaterials on the immune system. Toxicol. Sci. 138(2), 249–255 (2014)

    Google Scholar 

  122. Baumann, D., Hofmann, D., Nullmeier, S., Panther, P., Dietze, C., Musyanovych, A., et al.: Complex encounters: nanoparticles in whole blood and their uptake into different types of white blood cells. Nanomedicine (Lond.) 8(5), 699–713 (2013)

    Google Scholar 

  123. Lunov, O., Syrovets, T., Loos, C., Beil, J., Delacher, M., Tron, K., et al.: Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5(3), 1657–1669 (2011)

    Google Scholar 

  124. Clift, M.J., Gehr, P., Rothen-Rutishauser, B.: Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Arch. Toxicol. 85(7), 723–731 (2011)

    Google Scholar 

  125. Tonigold, M., Mailander, V.: Endocytosis and intracellular processing of nanoparticles in dendritic cells: routes to effective immunonanomedicines. Nanomedicine (Lond.) 11(20), 2625–2630 (2016)

    Google Scholar 

  126. Harush-Frenkel, O., Debotton, N., Benita, S., Altschuler, Y.: Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun. 353(1), 26–32 (2007)

    Google Scholar 

  127. Vasir, J.K., Labhasetwar, V.: Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 29(31), 4244–4252 (2008)

    Google Scholar 

  128. Garaiova, Z., Strand, S.P., Reitan, N.K., Lelu, S., Storset, S.O., Berg, K., et al.: Cellular uptake of DNA-chitosan nanoparticles: the role of clathrin- and caveolae-mediated pathways. Int. J. Biol. Macromol. 51(5), 1043–1051 (2012)

    Google Scholar 

  129. Parton, R.G., Simons, K.: The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8(3), 185–194 (2007)

    Google Scholar 

  130. Sahay, G., Alakhova, D.Y., Kabanov, A.V.: Endocytosis of nanomedicines. J. Control. Release. 145(3), 182–195 (2010)

    Google Scholar 

  131. Liu, Y., Huang, R., Han, L., Ke, W., Shao, K., Ye, L., et al.: Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials 30(25), 4195–4202 (2009)

    Google Scholar 

  132. Falcone, S., Cocucci, E., Podini, P., Kirchhausen, T., Clementi, E., Meldolesi, J.: Macropinocytosis: regulated coordination of endocytic and exocytic membrane traffic events. J. Cell Sci. 119(Pt 22), 4758–4769 (2006)

    Google Scholar 

  133. Mercer, J., Helenius, A.: Virus entry by macropinocytosis. Nat. Cell Biol. 11(5), 510–520 (2009)

    Google Scholar 

  134. Kolb-Maurer, A., Wilhelm, M., Weissinger, F., Brocker, E.B., Goebel, W.: Interaction of human hematopoietic stem cells with bacterial pathogens. Blood 100(10), 3703–3709 (2002)

    Google Scholar 

  135. Fiorentini, C., Falzano, L., Fabbri, A., Stringaro, A., Logozzi, M., Travaglione, S., et al.: Activation of rho GTPases by cytotoxic necrotizing factor 1 induces macropinocytosis and scavenging activity in epithelial cells. Mol. Biol. Cell 12(7), 2061–2073 (2001)

    Google Scholar 

  136. Steinman, R.M., Swanson, J.: The endocytic activity of dendritic cells. J. Exp. Med. 182(2), 283–288 (1995)

    Google Scholar 

  137. Sallusto, F., Cella, M., Danieli, C., Lanzavecchia, A.: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182(2), 389–400 (1995)

    Google Scholar 

  138. Zhang, L., Zhang, S., Ruan, S.B., Zhang, Q.Y., He, Q., Gao, H.L.: Lapatinib-incorporated lipoprotein-like nanoparticles: preparation and a proposed breast cancer-targeting mechanism. Acta Pharmacol. Sin. 35(6), 846–852 (2014)

    Google Scholar 

  139. Gupta, A.K., Gupta, M.: Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13), 1565–1573 (2005)

    Google Scholar 

  140. Zhang, J., Chen, X.G., Huang, L., Han, J.T., Zhang, X.F.: Self-assembled polymeric nanoparticles based on oleic acid-grafted chitosan oligosaccharide: biocompatibility, protein adsorption and cellular uptake. J. Mater. Sci. Mater. Med. 23(7), 1775–1783 (2012)

    Google Scholar 

  141. Wadhwa, S., Rea, C., O’Hare, P., Mathur, A., Roy, S.S., Dunlop, P.S., et al.: Comparative in vitro cytotoxicity study of carbon nanotubes and titania nanostructures on human lung epithelial cells. J. Hazard. Mater. 191(1–3), 56–61 (2011)

    Google Scholar 

  142. Panariti, A., Miserocchi, G., Rivolta, I.: The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol. Sci Appl. 5, 87–100 (2012)

    Google Scholar 

  143. Ahamed, M.: Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol. In Vitro 25(4), 930–936 (2011)

    Google Scholar 

  144. Gourlay, C.W., Ayscough, K.R.: The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat. Rev. Mol. Cell Biol. 6(7), 583–589 (2005)

    Google Scholar 

  145. Buyukhatipoglu, K., Clyne, A.M.: Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J. Biomed. Mater. Res. A 96(1), 186–195 (2011)

    Google Scholar 

  146. Scherbart, A.M., Langer, J., Bushmelev, A., van Berlo, D., Haberzettl, P., van Schooten, F.J., et al.: Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms. Part Fibre Toxicol. 8, 31 (2011)

    Google Scholar 

  147. Wang, H.J., Growcock, A.C., Tang, T.H., O’Hara, J., Huang, Y.W., Aronstam, R.S.: Zinc oxide nanoparticle disruption of store-operated calcium entry in a muscarinic receptor signaling pathway. Toxicol. In Vitro 24(7), 1953–1961 (2010)

    Google Scholar 

  148. Horie, M., Nishio, K., Kato, H., Fujita, K., Endoh, S., Nakamura, A., et al.: Cellular responses induced by cerium oxide nanoparticles: induction of intracellular calcium level and oxidative stress on culture cells. J. Biochem. 150(4), 461–471 (2011)

    Google Scholar 

  149. McCarthy, J., Gong, X., Nahirney, D., Duszyk, M., Radomski, M.: Polystyrene nanoparticles activate ion transport in human airway epithelial cells. Int. J. Nanomed. 6, 1343–1356 (2011)

    Google Scholar 

  150. Garrett, W.S., Chen, L.M., Kroschewski, R., Ebersold, M., Turley, S., Trombetta, S., et al.: Developmental control of endocytosis in dendritic cells by Cdc42. Cell 102(3), 325–334 (2000)

    Google Scholar 

  151. Zhang, L.W., Baumer, W., Monteiro-Riviere, N.A.: Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine (Lond.) 6(5), 777–791 (2011)

    Google Scholar 

  152. Le Roux, D., Le Bon, A., Dumas, A., Taleb, K., Sachse, M., Sikora, R., et al.: Antigen stored in dendritic cells after macropinocytosis is released unprocessed from late endosomes to target B cells. Blood 119(1), 95–105 (2012)

    Google Scholar 

  153. Platt, C.D., Ma, J.K., Chalouni, C., Ebersold, M., Bou-Reslan, H., Carano, R.A., et al.: Mature dendritic cells use endocytic receptors to capture and present antigens. Proc. Natl. Acad. Sci. U.S.A. 107(9), 4287–4292 (2010)

    ADS  Google Scholar 

  154. Rodriguez, A., Regnault, A., Kleijmeer, M., Ricciardi-Castagnoli, P., Amigorena, S.: Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat. Cell Biol. 1(6), 362–368 (1999)

    Google Scholar 

  155. Harding, C.V., Song, R.: Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J. Immunol. 153(11), 4925–4933 (1994)

    Google Scholar 

  156. Joffre, O.P., Segura, E., Savina, A., Amigorena, S.: Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12(8), 557–569 (2012)

    Google Scholar 

  157. Guermonprez, P., Saveanu, L., Kleijmeer, M., Davoust, J., Van Endert, P., Amigorena, S.: ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425(6956), 397–402 (2003)

    ADS  Google Scholar 

  158. Silva, A.L., Rosalia, R.A., Varypataki, E., Sibuea, S., Ossendorp, F., Jiskoot, W.: Poly-(lactic-co-glycolic-acid)-based particulate vaccines: particle uptake by dendritic cells is a key parameter for immune activation. Vaccine 33(7), 847–854 (2015)

    Google Scholar 

  159. Shen, H., Ackerman, A.L., Cody, V., Giodini, A., Hinson, E.R., Cresswell, P., et al.: Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117(1), 78–88 (2006)

    Google Scholar 

  160. Sneh-Edri, H., Likhtenshtein, D., Stepensky, D.: Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol. Pharm. 8(4), 1266–1275 (2011)

    Google Scholar 

  161. Jiskoot, W., van Schie, R.M., Carstens, M.G., Schellekens, H.: Immunological risk of injectable drug delivery systems. Pharm. Res. 26(6), 1303–1314 (2009)

    Google Scholar 

  162. Fuchs, A.K., Syrovets, T., Haas, K.A., Loos, C., Musyanovych, A., Mailander, V., et al.: Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials 85, 78–87 (2016)

    Google Scholar 

  163. Andersen, A.J., Hashemi, S.H., Andresen, T.L., Hunter, A.C., Moghimi, S.M.: Complement: alive and kicking nanomedicines. J. Biomed. Nanotechnol. 5(4), 364–372 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Mailänder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moll, L., Mailänder, V. (2019). Nanocarriers and Immune Cells. In: Gehr, P., Zellner, R. (eds) Biological Responses to Nanoscale Particles. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-12461-8_11

Download citation

Publish with us

Policies and ethics