Skip to main content

Vehicle Escape Dynamics on an Arbitrarily Curved Surface

  • Conference paper
  • First Online:
Nonlinear Structures and Systems, Volume 1

Abstract

This paper derives a planar model for a vehicle on an arbitrarily curved surface. The goal is to investigate different strategies that may be used to free a vehicle from a ditch. More specifically, extricating a modern vehicle typically requires someone to get behind the vehicle and assist in pushing it out of the ditch. Due to human limitations in power output, the individual learns to rhythmically time their push, or applied force, to build momentum and achieve escape.

Numerical simulations were used to explore different strategies, or forcing functions, on this system. For example, this paper considers forcing the system at its linear natural frequency and a forcing strategy more akin to human behavior. Comparisons are made to determine the safest and most efficient strategy to achieve an escape. This paper will show the effectiveness of human intuition in pushing a vehicle out of a ditch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharp, R.S., Peng, H.: Vehicle dynamics applications of optimal control theory. Veh. Syst. Dyn. 49(7), 1073–1111 (2011)

    Article  Google Scholar 

  2. Yang, S., Lu, Y., Li, S.: An overview on vehicle dynamics. Int. J. Dynam. Control. 1(4), 385–395 (2013)

    Article  Google Scholar 

  3. Schiehlen, W.: Benchmark problems from vehicle dynamics. J. Mech. Sci. Technol. 29(7), 2601–2606 (2015)

    Article  Google Scholar 

  4. Leoro, J., Krutitskiy, S., Tarasov, A., Borovkov, A., Aleshin, M., Kylavin, O.: Vehicle dynamics prediction module. Mater. Phys. Mech. 34(1), 82–89 (2017)

    Google Scholar 

  5. He, Z., Ji, X.: Nonlinear robust control of integrated vehicle dynamics. Veh. Syst. Dyn. 50(2), 247–280 (2012)

    Article  Google Scholar 

  6. Wang, J., Longoria, R.G.: Coordinated and reconfigurable vehicle dynamics control. IEEE Trans. Control Syst. Technol. 17(3), 723–732 (2009)

    Article  Google Scholar 

  7. Mashadi, B., Gowdini, M.: Vehicle dynamics control by using an active gyroscopic device. J. Dyn. Syst. Meas. Control. 137(12), 121007 (2015)

    Article  Google Scholar 

  8. Velardocchia, M.: Control systems integration for enhanced vehicle dynamics. Open Mech. Eng. J. 7(1), 58–69 (2013)

    Article  Google Scholar 

  9. Ferrara, A., Incremona, G.P., Regolin, E.: Optimization-based adaptive sliding mode control with application to vehicle dynamics control. Int. J. Robust Nonlinear Control. (2018). https://doi.org/10.1002/rnc.4105

  10. Lopez, A., Moriano, C., Olazagoitia, J.L., Paez, F.J.: Fast computing on vehicle dynamics using Chebyshev series expansions. IEEE/ASME Trans. Mechatronics. 20(5), 2563–2574 (2015)

    Article  Google Scholar 

  11. Yavin, Y.: Modelling of the motion of a cart on a smooth rigid surface. Math. Comput. Model. 36(4–5), 525–533 (2002)

    Article  MathSciNet  Google Scholar 

  12. Yavin, Y.: Modelling and control of the motion of a cart moving on a plane with a time-dependent inclination. Math. Comput. Model. 37(3–4), 293–299 (2003)

    Article  MathSciNet  Google Scholar 

  13. Chatzis, M.N., Smyth, A.W.: Three-dimensional dynamics of a rigid body with wheels on a moving base. J. Eng. Mech. 139(4), 496–511 (2013)

    Article  Google Scholar 

  14. Virgin, L.N., Lyman, T.C., Davis, R.B.: Nonlinear dynamics of a ball rolling on a surface. Am. J. Phys. 78(3), 250–257 (2010)

    Article  Google Scholar 

  15. Nimbarte, A.D., Sun, Y., Jaridi, M., Hsiao, H.: Biomechanical loading of the shoulder complex and lumbosacral joints during dynamic cart pushing task. Appl. Ergon. 44(5), 841–849 (2013)

    Article  Google Scholar 

  16. Hoozemans, M.J.M., Slaghuis, W., Faber, G.S., van Dieën, J.H.: Cart pushing: the effects of magnitude and direction of the exerted push force, and of trunk inclination on low back loading. Int. J. Ind. Ergon. 37(11–12), 832–844 (Nov 2007)

    Article  Google Scholar 

  17. Glitsch, U., Ottersbach, H.J., Ellegast, R., Schaub, K., Franz, G., Jäger, M.: Physical workload of flight attendants when pushing and pulling trolleys aboard aircraft. Int. J. Ind. Ergon. 37(11–12), 845–854 (2007)

    Article  Google Scholar 

  18. Ciriello, V.M., Maikala, R.V., Dempsey, P.G., OBrien, N.V.: Cart pushing capabilities for males and females: an update. Proc. Hum. Factors Ergonomics Soc. Annu. Meet. 53(14), 897–901 (2009)

    Article  Google Scholar 

  19. Berning, J.M., Adams, K.J., Climstein, M., Stamford, B.A.: Metabolic demands of “junkyard” training: pushing and pulling a motor vehicle. J. Strength Cond. Res. 21(3), 853 (2007)

    Google Scholar 

Download references

Acknowledgments

The research is funded by Army Research Lab Grant W911NF-17-2-0047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levi H. Manring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manring, L.H., Mann, B.P. (2020). Vehicle Escape Dynamics on an Arbitrarily Curved Surface. In: Kerschen, G., Brake, M., Renson, L. (eds) Nonlinear Structures and Systems, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12391-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12391-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12390-1

  • Online ISBN: 978-3-030-12391-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics