Skip to main content

Adaptive Packet Routing on Communication Networks Based on Reinforcement Learning

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 70))

Included in the following conference series:

  • 1527 Accesses

Abstract

An adaptive approach to routing packets on a communication network using machine learning has been reported on our empirical study. We show that the approach of Q-routing previously demonstrated on small toy networks can be expanded to large networks of realistic sizes. The performance of such a routing approach on synthetic networks of three different topology has been studied: random connections, preferential attachment (PA) and a specific architecture known as highly optimized topology (HOT), specifically designed to mimic the Internet’s router level topology. Our simulations show that in terms of discovering alternate paths under high loads, the HOT topology is able to offer significant advantage over a PA network which is characterized by hubs at which communication bottlenecks form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanenbaum, A.S., Wetherall, D.J.: Computer Networks. Pearson (2010)

    Google Scholar 

  2. Atzori, Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787-2805, (2010)

    Article  MATH  Google Scholar 

  3. Hopfield, J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc Nat. Acad. Sci USA 84, 3088–3092 (1984)

    Article  MATH  Google Scholar 

  4. Aiyer, S.V., Niranjan, M., Fallside, F.: A theoretical investigation into the performance of the Hopfield model. IEEE Trans. Neural Netw. 1(2), 204–215 (1990)

    Article  Google Scholar 

  5. Smith, K.A.: Neural networks for comninatorial optimization: a review of more than a decade of research. INFORMS J. Comput. 11(1), 15–34 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: an introduction. The MIT Press (2018)

    Google Scholar 

  7. Crites, R.H., Barto, A.G.: Improving elevator performance using reinforcement learning pp. 1017–1023 (1996)

    Google Scholar 

  8. Brosch, T., Neumann, H., Roelfsema, P.R.: Reinforcement learning of linking and tracing contours in recurrent neural networks. PLOS Comput. Biol. 11(10), 1–36 (2015)

    Article  Google Scholar 

  9. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    MATH  Google Scholar 

  10. Haraty, R.A., Traboulsi, B.: MANET with the Q-routing protocol. In: ICN The Eleventh International Conference on Networks, pp. 187–192 (2012)

    Google Scholar 

  11. Maleki, M., Hakami, V., Dehghan, M.: A reinforcement learning-based bi-objective routing algorithm for energy harvesting mobile ad-hoc networks. In: IST The Seventh International Symposium on Telecommunications, pp. 1082–1087 (2014)

    Google Scholar 

  12. Bhorkar, A.A., Naghshvar, M., Javidi, T., Rao, B.D.: Adaptive opportunistic routing for wireless ad hoc networks. IEEE/ACM Trans. Networking (TON) 20(1), 243–256 (2012)

    Article  Google Scholar 

  13. Lin, Z., van der Schaar, M.: Autonomic and distributed joint routing and power control for delay-sensitive applications in multi-hop wireless networks. IEEE Trans. Wirel. Commun. 10(1), 102–113 (2011)

    Article  Google Scholar 

  14. Santhi, G., Nachiappan, A., Ibrahime, M.Z., Raghunadhane, R., Favas, M.: IEEE. Q-learning based adaptive qos routing protocol for manets. In: 2011 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 1233–1238 (2011)

    Google Scholar 

  15. Hu, T., Fei, Y.: Qelar: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Trans. Mobile Comput. 9(6), 796–809 (2010)

    Article  Google Scholar 

  16. Dowling, J., Curran, E., Cunningham, R., Cahill, V.: Using feedback in collaborative reinforcement learning to adaptively optimize manet routing. IEEE Trans. Syst. Man, Cybern.-Part A 84, 3088–3092 (1984)

    Google Scholar 

  17. Boyan, J.A., Littman, M.L.: Packet routing in dynamically changing networks: A reinforcement learning approach. Adv. Neural Inf. Process. Syst. 671–678 (1994)

    Google Scholar 

  18. Murhammer, M.W., Lee, K.K., Motallebi, P., Borgi, P., Wozabal, K.: IP Network Design Guide. IBM (1999)

    Google Scholar 

  19. Batagelj, V., Brandes, U.: Efficient generation of large random networks. Phys. Rev. E 71(3), 1–13 (2005)

    Article  Google Scholar 

  20. Li, L., Alderson, D., Willinger, W., Doyle, J.: A first-principles approach to understanding the internet’s router-level topology. ACM SIGCOMM Comput. Commun. Rev. 34(4), 3–14 (2004)

    Article  Google Scholar 

  21. Chiocchetti, R., Perino, D., Carofiglio, G., Rossi, D., Rossini, G.: ACM. Inform: a dynamic interest forwarding mechanism for information centric networking, pp. 9–14 (2013)

    Google Scholar 

  22. Paul, S., Banerjee, B., Mukherjee, A., Naskar, M.K.: Priority-based content processing with Q-routing in information-centric networking (ICN). Photonic Netw. Commun. 1–11 (2016)

    Google Scholar 

  23. Chakrabarti, D., Faloutsos, C.: Graph mining: laws, tools, and case studies, Synthesis Lectures on. Data Mining Knowl. Discovery 7(1), 1–207 (2012)

    Google Scholar 

  24. Newman, M.E., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. National Acad. Sci. 99(1), 2566–2572 (2002)

    Article  MATH  Google Scholar 

  25. BarabĂ¢si, A.L., Jeong, H., NĂ©da, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A: Stat. Mech. Appl. 311(3), 290–614 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Dorogovtsev, S.N., Mendes, J.F.: Evolution of networks. Adv. Phys. 51(4), 1079–1187 (2002)

    Article  Google Scholar 

  27. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ethernet Jumbo Frames, http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf. Accessed 6 October 2016

  29. Rummery, G.A., Niranjan, M.: On-line Q-learning Using Connectionist Systems. University of Cambridge, Department of Engineering, (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanyaluk Deeka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deeka, T., Deeka, B., On-rit, S. (2020). Adaptive Packet Routing on Communication Networks Based on Reinforcement Learning. In: Arai, K., Bhatia, R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-12385-7_12

Download citation

Publish with us

Policies and ethics