Skip to main content

Special Difference Operators and the Constants in the Classical Jackson-Type Theorems

  • Chapter
  • First Online:

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In this survey we will show how one can use the operators

$$\displaystyle W_{2k}(f,h)(x) :=(-1)^k \frac 1{ h \binom {2k} k}\int _{-h}^h \ \widehat \Delta _t^{2k} f(x) \left ( 1 - \frac {|t|}h \right )\, dt, \qquad h>0,$$

where

$$\displaystyle \widehat \Delta _h^{m} f(x):=\sum _{j=0}^{m} (-1)^{j+m} \binom {m}{j} f(x+jh-mh/2),$$

to indicate the sharp order (with respect to k) of the Jackson–Stechkin constants in the main theorems of the classical approximation theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.S. Shapiro, A Tauberian theorem related to approximation theory. Acta Math. 120, 279–292 (1968)

    Article  MathSciNet  Google Scholar 

  2. H.S. Shapiro, Smoothing and Approximation of Functions. Mathematical Studies, vol. 24 (Van Nostrand Reinhold, New York, 1970)

    Google Scholar 

  3. S.B. Stechkin, On the order of the best approximations of continuous functions. Izv. Akad. Nauk SSSR, Ser. Mat. 15, 219–242 (1951, in Russian)

    Google Scholar 

  4. Y.A. Brudnyi, The approximation of functions by algebraic polynomials. Math. USSR Izvestia 2(4), 735–743 (1968)

    Article  Google Scholar 

  5. S. Foucart, Y. Kryakin, A. Shadrin, On the exact constant in Jackson-Stechkin inequality for the uniform metric. Constr. Approx. 29(2), 157–179 (2009)

    Article  MathSciNet  Google Scholar 

  6. A.G. Babenko, Y.V. Kryakin, P.T. Staszak, Special moduli of continuity and the constant in the Jackson–Stechkin theorem. Constr. Approx. 38(3), 339–364 (2013)

    Article  MathSciNet  Google Scholar 

  7. A.G. Babenko, Y.V. Kryakin, On constants in the Jackson Stechkin theorem in the case of approximation by algebraic polynomials. Proc. Steklov Inst. Math. 303, 18–30 (2018)

    Article  MathSciNet  Google Scholar 

  8. O.L. Vinogradov, V.V. Zhuk, The rate of decrease of constants in Jackson type inequalities in dependence of the order of modulus of continuity, in Zap. Nauchn. Sem. POMI, vol. 383 (POMI, St. Petersburg, 2010), pp. 33–52

    Google Scholar 

  9. O.L. Vinogradov, V.V. Zhuk, Estimates for functionals with a known moment sequence in terms of deviations of Steklov type means. J. Math. Sci. (New York) 178(2), 115–131 (2011)

    Article  MathSciNet  Google Scholar 

  10. O.L. Vinogradov, V.V. Zhuk, Estimates for functionals with a known finite set of moments in terms of deviations of operators constructed with the use of the Steklov averages and finite differences. J. Math. Sci. (New York) 184(6), 679–698 (2012)

    Article  MathSciNet  Google Scholar 

  11. O.L. Vinogradov, V.V. Zhuk, Estimates for functional with a known finite set of moments in terms of moduli of continuity and behaviour of constants in the Jackson-type inequalities. St. Petersburg Math. J. 24(5), 691–721 (2013)

    Article  MathSciNet  Google Scholar 

  12. O.L. Vinogradov, V.V. Zhuk, Estimates for functionals with a known finite set of moments in terms of high order moduli of continuity in the spaces of functions defined on the segment. St. Petersburg Math. J. 25(3), 421–446 (2014)

    Article  MathSciNet  Google Scholar 

  13. H. Whitney, On the functions with bounded n-th differences. J. Math. Pures Appl. 36(9), 67–95 (1957)

    MathSciNet  MATH  Google Scholar 

  14. B. Sendov, On the constants of H. Whitney. C. R. Acad. Bulg. Sci. 35(4), 431–434 (1982)

    MATH  Google Scholar 

  15. K. Ivanov, M. Takev, \(O(n \ln (n))\) bounds of constants of H. Whitney. C. R. Acad. Bulg. Sci. 38(9), 1129–1131 (1985)

    Google Scholar 

  16. P. Binev, O(n) bounds of Whitney constants. C. R. Acad. Bulg. Sci. 38(10), 1315–1317 (1985)

    MathSciNet  Google Scholar 

  17. B. Sendov, The constants of H. Whitney are bounded. C. R. Acad. Bulg. Sci. 38(10), 1299–1302 (1985)

    MATH  Google Scholar 

  18. Y.V. Kryakin, Whitney constants. Mat. Zametki 46(2), 155–157 (1989, in Russian)

    Google Scholar 

  19. Y.V. Kryakin, Whitney’s constants and Sendov’s conjectures. Math. Balkanica (N.S.) 16(1–4), 235–247 (2002)

    Google Scholar 

  20. Y.V. Kryakin, On Whitney’s theorem and constants. Russ. Acad. Sci. Sbornik Math. 81(2), 281–295 (1995)

    Article  MathSciNet  Google Scholar 

  21. J. Gilewicz, I.A. Shevchuk, Y.V. Kryakin, Boundedness by 3 of the Whitney interpolation constant. J. Approx. Theory 119(2), 271–290 (2002)

    Article  MathSciNet  Google Scholar 

  22. V.K. Dzyadyk, I.A. Shevchuk, Theory of Uniform Approximation of Functions by Polynomials (Walter de Gruyter, Berlin, 2008)

    MATH  Google Scholar 

  23. Y.V. Kryakin, On exact constants in the Whitney theorem. Math. Notes 54(1), 688–700 (1993)

    Article  MathSciNet  Google Scholar 

  24. Y.V. Kryakin, On functions with bounded n-th differences. Izv. Math. 61(2), 331–346 (1997)

    Article  MathSciNet  Google Scholar 

  25. O. Zhelnov, Whitney constants are bounded by 1 for k = 5,  6,  7. East J. Approx. 8, 1–14 (2002)

    MathSciNet  MATH  Google Scholar 

  26. O. Zhelnov, Whitney’s inequality and its generalizations. Ph.D., Kiev, 2004, 128 pp.

    Google Scholar 

  27. H. Bohr, Ein allgemeiner Satz über die Integration eines trigonometrischen Polynoms. Pr. Mat.-Fiz. 43, 273–288 (1935) (Collected Mathematical Works II, C 36)

    Google Scholar 

  28. J. Favard, Sur l’pproximation des fonctions périodiques par des polynomes trigonométriques. C. R. Acad. Sci. Paris 203, 1122–1124 (1936)

    MATH  Google Scholar 

  29. J. Favard, Sur les meilleurs procedes d’approximation de certaies clasess de fonctions par des polynomes trigonometriques. Bull. Sci. Math. 61, 209–224, 243–256 (1937)

    MATH  Google Scholar 

  30. N.I. Akhiesier, M.G. Krein, On the best approximation of periodic functions. DAN SSSR 15, 107–112 (1937, in Russian)

    Google Scholar 

  31. N.P. Korneichuk, On the best approximation of continuous functions. Izv. Akad. Nauk SSSR Ser. Mat. 27(1), 29–44 (1963)

    MathSciNet  Google Scholar 

  32. N.P. Korneichuk, Precise constant in Jackson’s inequality for continuous periodic functions. Math. Notes 32(5), 818–821 (1982)

    Article  Google Scholar 

  33. V.G. Babenko, V.V. Shalaev, Best approximation estimates resulting from the Chebyshev criterion. Math. Notes 49(4), 431–433 (1991)

    Article  MathSciNet  Google Scholar 

  34. Y.V. Kryakin, Constants in Jackson’s theorem. UWr Report 141, 1–14 (2005)

    Google Scholar 

  35. Y.V. Kryakin, Bohr–Favard inequality for differences and constants in the Jackson–Stechkin theorem, 1–6 (2005). arXiv: math/0512048v1

    Google Scholar 

  36. A.G. Babenko, Y.V. Kryakin, Integral approximation of the characteristic function of an interval and the Jackson inequality in \(C(\mathbb T)\). Proc. Steklov Inst. Math. 265(Suppl. 1), 56–63 (2009)

    Article  MathSciNet  Google Scholar 

  37. A.G. Babenko, Y.V. Kryakin, Integral approximation of the characteristic function of an interval by trigonometric polynomials. Proc. Steklov Inst. Math. 264(Suppl. 1), 19–38 (2009)

    Article  MathSciNet  Google Scholar 

  38. J. Geronimus, Sur un probléme extr‘emal de Tchebycheff. Izv. Akad. Nauk SSSR Ser. Mat. 2(4), 445–456 (1938)

    MATH  Google Scholar 

  39. F. Peherstorfer, On the representation of extremal functions in the L 1-norm. J. Approx. Theory 27(1), 61–75 (1979)

    Article  MathSciNet  Google Scholar 

  40. A.G. Babenko, Y.V. Kryakin, V.A. Yudin, On one of Geronimus’s results. Proc. Steklov Inst. Math. 273(Suppl. 1), 37–48 (2011)

    Article  MathSciNet  Google Scholar 

  41. J. Geronimus, On some extremal properties of polynomials. Ann. Math. 37(2), 483–517 (1936)

    Article  MathSciNet  Google Scholar 

  42. J. Geronimus, Sur un problème de F. Riesz et le problème généralisé de Tchebycheff–Korkine–Zolotareff. Izv. Akad. Nauk SSSR Ser. Mat. 3(3), 279–288 (1939)

    Google Scholar 

  43. A.G. Babenko, N.V. Dolmatova, Y.V. Kryakin, Jackson’s exact inequality with a special modulus of continuity. Proc. Steklov Inst. Math. 284(Suppl. 1), 41–58 (2014)

    Article  MathSciNet  Google Scholar 

  44. W. Stekloff, Sur les problemes de représentation des fonctions a l’aide de polynomes, du calcul approché des intégrales définies, du développement des fonctions en séries infinies suivant les polynomes et de l’interpolation, considérés au point de vue des idées de Tchebycheff, in Proceeding of ICM, Toronto (1924), pp. 631–640

    Google Scholar 

  45. C. Neumann, Untersuchungen über das Logarithmische und Newton’sche potential (Teubner, Leipzig, 1877)

    MATH  Google Scholar 

  46. J. Boman, H. Shapiro, Comparison theorems for a generalized modulus of continuity. Ark. Mat. 9, 91–116 (1971)

    Article  MathSciNet  Google Scholar 

  47. H.F. Sinwel, Uniform approximation of differentiable functions by algebraic polynomials. J. Approx. Theory 32, 1–8 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of A.G. Babenko was supported by the Russian Foundation for Basic Research (project no. 18-01-00336a) and by the Ural Federal University within the Russian Academic Excellence Project “5-100” (agreement no. 02.A03.21.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy V. Kryakin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babenko, A.G., Kryakin, Y.V. (2019). Special Difference Operators and the Constants in the Classical Jackson-Type Theorems. In: Abell, M., Iacob, E., Stokolos, A., Taylor, S., Tikhonov, S., Zhu, J. (eds) Topics in Classical and Modern Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-12277-5_2

Download citation

Publish with us

Policies and ethics