Skip to main content

A Model of Residential Mail Delivery by Drones

  • Conference paper
  • First Online:
Book cover Modeling and Optimization: Theory and Applications (MOPTA 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 279))

Included in the following conference series:

  • 505 Accesses

Abstract

This paper proposes and analyzes a model of mail delivery in mid-size Canadian urban areas consisting of retrofitting current delivery trucks with a limited number of drones, which can be flown to a number of addresses in a given urban area. Such a truck would then travel between specific locations (called truck-stops), where drone deployment would be executed from. The designated truck-stops are outputs of a proposed algorithm that uses delivery demand data and drone characteristics; they change depending on the needed delivery coverage on a given day. We discuss whether this delivery method could be used in different types of urban areas, where the time to delivery to customers can be shortened, as compared to classic door-to-door delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, we take the height difference between red column in lower left panel of Fig. 3 and the height of the \(N_d=6\) blue column in the same panel.

  2. 2.

    For instance, we found an estimated cost for Amazon prime of $0.88 per delivery or of $0.24 for a delivery of a 2 kg package over 10 km, but the latter drones [26] also had docking stations which would not be needed here.

References

  1. Agha-Mohammadi, A.A., Ure, N.K., How, J.P., Vian, J.: Health aware stochastic planning for persistent package delivery missions using quadrotors. In: IEEE International Conference on Intelligent Robots and Systems (IROS 2014), pp. 3389–3396 (2014). https://doi.org/10.1109/IROS.2014.6943034

  2. Ali, A., Ballou, N., McDougall, B., Valle Ramos, J.L.: Decision-support tool for designing small package delivery aerial vehicles (DST-SPDAV). In: Systems and Information Engineering Design Symposium (SIEDS), pp. 45–50 (2015)

    Google Scholar 

  3. Astrov, I., Pedai, A.: Situational awareness based flight control of a drone. In: IEEE International Systems Conference (SysCon) 2011, pp. 574–578 (2011). https://doi.org/10.1109/SYSCON.2011.5929033

  4. Berenz, V., Suzuki, K.: Risk and gain battery management for self-docking mobile robots. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1766–1771 (2011). https://doi.org/10.1109/ROBIO.2011.6181545

  5. Berman, E.S.F., Fladeland, M., Liem, J., Kolyer, R., Gupta, M.: Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle. Sens. Actuators B Chem. 169(2012), 128–135 (2012)

    Article  Google Scholar 

  6. Canada Post’s Five Point Action Plan. http://www.canadapost.ca/cpo/mc/assets/pdf/aboutus/5_en.pdf (2015)

  7. Chen, Y.M., Dong, L., Oh, J.-S.: Real-time video relay for UAV traffic surveillance systems through available communication networks. IEEE Wirel. Commun. Netw. Conf. WCNC 2007, 2608–2612 (2007)

    Google Scholar 

  8. D’Andrea, R.: Guest editorial: can drones deliver?, IEEE Trans. Autom. Sci. Eng. 11(3), 647–648 (2014)

    Google Scholar 

  9. Doherty, P., Rudol, P.: A UAV search and rescue scenario with human body detection and geolocalization. In: AI 2007: Advances in Artificial Intelligence. Lecture Notes in Computer Science, vol. 4830, pp. 1–13 (2007). https://doi.org/10.1007/978-3-540-76928-6_1

  10. Erdos, D., Erdos, A. and Watkins, S.E.: An experimental UAV system for search and rescue challenge. IEEE Aerosp. Electron. Syst. Mag. 28(5), 32–37 (2013)

    Google Scholar 

  11. Ezequiel, C.A.F., Cua, M., Libatique, N.C., Tangonan, G.L., Alampay, R., Labuguen, R.T., Favila, C.M., Honrado, J.L.E., Canos, V., Devaney, C., Loreto, A.B., Bacusmo, J., Palma, B.: UAV aerial imaging applications for post-disaster assessment, environmental management and infrastructure development. In: International Conference on Unmanned Aircraft Systems (ICUAS), 2014, pp. 274–283 (2014). https://doi.org/10.1109/ICUAS.2014.6842266

  12. Frew, E.W., Brown, T.X.: Networking issues for small unmanned aircraft systems. J. Intell. Robot. Syst. 54(1–3), 21–37

    Google Scholar 

  13. Google maps API for route optimization. http://www.optimap.net/

  14. Hong, I., Kuby, M., Murray, A.: Deviation flow refueling location model for continuous space: commercial drone delivery system for urban area. In: Proceedings of the 13th International Conference on Geocomputation Geospatial Information Sciences (2015)

    Google Scholar 

  15. Jimenez Lugo, J., Zell, A.: Framework for autonomous onboard navigation with the AR.Drone. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 575–583 (2013). https://doi.org/10.1109/ICUAS.2013.6564735

  16. Johnson, L.F., Herwitz, S., Dunagan, S., Lobitz, B., Sullivan, D., Slye, R.: Collection of ultra high spatial and spectral resolution image data over California vineyards with a small UAV. In: Proceedings of the 30th International Symposium on Remote Sensing of Environment, vol. 20, pp. 845–849 (2003)

    Google Scholar 

  17. Kim, J., Lee, Y.S., Han, S.S., Kim, S.H., Lee, G.H., Ji, H.J., Choi, H.J., Choi, K.N.: Autonomous flight system using marker recognition on drone. In: Frontiers of Computer Vision (FCV), 21st Korea-Japan Joint Workshop, pp. 1–4 (2015). https://doi.org/10.1109/FCV.2015.7103712

  18. Kim, H.J., Shim, D.H., Sastry, S.: Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles. In: American Control Conference Proceedings 2002, vol. 5, pp. 3576–3581 (2002)

    Google Scholar 

  19. Murray, C.C., Chu, A.G.: The flying sidekick traveling salesman problem: optimization of drone-assisted parcel delivery. Transp. Res. Part C Emerg. Technol. 54(86–109) (2015)

    Google Scholar 

  20. Pfaender, H., DeLaurentis, D., Mavris, D.: An object-oriented approach for conceptual design exploration of UAV-based system-of-systems. In: Proceedings of 2nd AIAA Unmanned Unlimited Conference, Ser. AIAA, vol. 6521 (2003)

    Google Scholar 

  21. Sisko, M.: Robotic aerial vehicle delivery system and method, Windermere, FL, US, no. 20150158599. www.freepatentsonline.com/y2015/0158599.html (2015)

  22. Supimros, S., Wongthanavasu, S.: Speech recognition—based control system for drone. In: Third ICT International Student Project Conference (ICT-ISPC), pp. 107–110 (2014). https://doi.org/10.1109/ICT-ISPC.2014.6923229

  23. Torres-Sánchez, J., López-Granados, F., De Castro, A.I., Peña-Barragán, J.M.: Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PLoS ONE 8(3), e58210 (2013). https://doi.org/10.1371/journal.pone.0058210

  24. UPS Press Release, 2016: UPS Wins 2016 INFORMS Franz Edelman Award for Changing the Future of Package Delivery (n.d.). https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases

  25. Stewart, J.: A drone-slinging UPS van delivers the future. In: Wired. https://www.wired.com/2017/02/drone-slinging-ups-van-delivers-future/ (2017)

  26. Wang, D.: The economics of drone delivery. Online at Flexport.com. https://www.flexport.com/blog/drone-delivery-economics/ (2015)

  27. Wilson, R.L.: Ethical issues with use of drone aircraft. In: IEEE International Symposium on Ethics in Science, Technology and Engineering, pp. 1–4 (2014). https://doi.org/10.1109/ETHICS.2014.6893424.

  28. Xu, C., Zhang, X.: A routing algorithm for schismatic communication network based on UAV. In: IEEE 4th International Conference on Electronics Information and Emergency Communication (ICEIEC), pp. 49–52 (2013). https://doi.org/10.1109/ICEIEC.2013.6835451

  29. Zhang, H., Wei, S., Yu, W., Blasch, E., Chen, G., Shen, D., Pham, K.: Scheduling methods for unmanned aerial vehicle based delivery systems. In: IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC), pp. 6C1–1 (2014)

    Google Scholar 

  30. Zhou, T.T.G., Zhou, D.T.X., Zhou, A.H.B.: Unmanned drone, robot system for delivering mail, goods, humanoid security, crisis negotiation, mobile payments, smart humanoid mailbox and wearable personal exoskeleton heavy load flying machine. Google patents, US Patent App. 14/285,659 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Engineering Research Council of Canada (NSERC) under Discovery Grant [number 400684] of first author, under Discovery Grant [number 400551] of the 2nd author and an NSERC USRA award for undergraduate students (3rd author).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica G. Cojocaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cojocaru, M.G., Thommes, E.W., Gillies, S. (2019). A Model of Residential Mail Delivery by Drones. In: Pintér, J.D., Terlaky, T. (eds) Modeling and Optimization: Theory and Applications. MOPTA 2017. Springer Proceedings in Mathematics & Statistics, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-030-12119-8_1

Download citation

Publish with us

Policies and ethics