Skip to main content

T Wave Alternans Analysis in ECG Signal: A Survey of the Principal Approaches

  • Conference paper
  • First Online:
Book cover Information Technology and Systems (ICITS 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 918))

Included in the following conference series:

Abstract

The T wave alternans (TWA) is an important phenomenon not only within the clinical field but within the scientific and technological field, it has been considered an important, non-invasive, very promising indicator to stratify the risk of sudden cardiac death. Due to its microvolt amplitude and background noises, sophisticated signal processing techniques are required for its detection and estimation. In this paper we present a survey of the state of the art focusing to detect sudden cardiac death by analyzing the T wave on long-term ECG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gimeno-Blanes, F.J., Blanco-Velasco, M., Barquero-Pérez, Ó., García-Alberola, A., Rojo-álvarez, J.L.: Sudden cardiac risk stratification with electrocardiographic indices - a review on computational processing, technology transfer, and scientific evidence. Front. Physiol. 7, 1–17 (2016)

    Article  Google Scholar 

  2. Narayan, S., Botteron, G., Smith, J.: T-wave alternans spectral magnitude is sensitive to electrocardiographic beat alignment strategy. 24(ii), 593–596 (1997)

    Google Scholar 

  3. Pham, Q., Quan, K.J., Rosenbaum, D.S.: T-wave alternans: marker, mechanism, and methodology for predicting sudden cardiac death. J. Electrocardiol. 36, 75–81 (2003)

    Article  Google Scholar 

  4. Monasterio, V., Clifford, G.D., Laguna, P., Martí Nez, J.P.: A multilead scheme based on periodic component analysis for T-wave alternans analysis in the ECG. Ann. Biomed. Eng. 38(8), 2532–2541 (2010)

    Article  Google Scholar 

  5. World Health Organization: The top 10 causes of death (2014)

    Google Scholar 

  6. Shen, T.W., Tsao, Y.T.: An improved spectral method of detecting and quantifying T-wave alternans for SCD risk evaluation. Comput. Cardiol. 35, 609–612 (2008)

    Google Scholar 

  7. Ghoraani, B., Krishnan, S., Selvaraj, R.J., Chauhan, V.S.: T wave alternans evaluation using adaptive time-frequency signal analysis and non-negative matrix factorization. Med. Eng. Phys. 33(6), 700–711 (2011)

    Article  Google Scholar 

  8. Valverde, E., Arini, P.: Study of T-wave spectral variance during acute myocardial ischemia, pp. 653–656 (2012)

    Google Scholar 

  9. Murukesan, L., Murugappan, M., Iqbal, M.: Sudden cardiac death prediction using ECG signal derivative (heart rate variability): a review, pp. 8–10 (2013)

    Google Scholar 

  10. INEC: Principales causas de mortalidad

    Google Scholar 

  11. Chugh, S.S.: Early identification of risk factors for sudden cardiac death. Nat. Rev. Cardiol. 7(6), 318 (2010)

    Article  Google Scholar 

  12. Irshad, A., Bakhshi, A.D., Bashir, S.: *Department of Electrical Engineering, College of Electrical and Mechanical Engineering, National University of Science and Technology, Islamabad, Pakistan. **Department of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan, pp. 222–227 (2015)

    Google Scholar 

  13. Blanco-Velasco, M., Cruz-Roldán, F., Godino-Llorente, J.I., Barner, K.E.: Nonlinear trend estimation of the ventricular repolarization segment for T-wave alternans detection. IEEE Trans. Biomed. Eng. 57(10 PART 1), 2402–2412 (2010)

    Article  Google Scholar 

  14. Martínez, J.P., Olmos, S.: Methodological principles of T wave alternans analysis: a unified framework. IEEE Trans. Biomed. Eng. 52(4), 599–613 (2005)

    Article  Google Scholar 

  15. Adam, D.R., Smith, J., Akselrod, S., Nyberg, S., Powell, A.O., Cohen, R.J.: Fluctuations in T-wave morphology and susceptibility to ventricular fibrillation. J. Electrocardiol. 17, 209–218 (1984)

    Article  Google Scholar 

  16. Haghjoo, M., Arya, A., Sadr-Ameli, M.A.: Microvolt T-wave alternans: a review of techniques, interpretation, utility, clinical studies, and future perspectives. Int. J. Cardiol. 109(3), 293–306 (2006)

    Article  Google Scholar 

  17. Nemati, S., Abdala, O., Monasterio, V., Yim-Yeh, S., Malhotra, A., Clifford, G.D.: A nonparametric surrogate-based test of significance for T-wave alternans detection. IEEE Trans. Biomed. Eng. 58(5), 1356–1364 (2011)

    Article  Google Scholar 

  18. Iravanian, S., Kanu, U.B., Christini, D.J.: A class of Monte-Carlo-based statistical algorithms for efficient detection of repolarization alternans. IEEE Trans. Biomed. Eng. 59(7), 1882–1891 (2012)

    Article  Google Scholar 

  19. Stroobandt, R.X., Barold, S.S., Sinnaeve, A.F.: ECG from basics to essentials: step by step (2016)

    Google Scholar 

  20. Tompkins, W.J.: Biomedical Digital Signal Processing: C-Language Examples and Laboratory Experiments for the IBM PC. Prentice Hall, Hauptbd (2000)

    Google Scholar 

  21. Nearing, B.D., Verrier, R.L.: Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J. Appl. Physiol. 92(2), 541–549 (2002)

    Article  Google Scholar 

  22. Martínez, J.P., Olmos, S.: A robust T wave alternans detector based on the GLRT for Laplacian noise distribution. In: Computers in Cardiology, pp. 677–680. IEEE (2002)

    Google Scholar 

  23. Bashir, S., Bakhshi, A.D., Maud, M.A.: A template matched-filter based scheme for detection and estimation of T-wave alternans. Biomed. Signal Process. Control 13(1), 247–261 (2014)

    Article  Google Scholar 

  24. Fujita, H., Acharya, U.R., Sudarshan, V.K., Ghista, D.N., Sree, S.V., Eugene, L.W.J., Koh, J.E.: Sudden Cardiac Death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Appl. Soft Comput. J. 43, 510–519 (2016)

    Article  Google Scholar 

  25. Gualsaqui Miranda, M.V., Vizcaino Espinosa, I.P., Flores Calero, M.J.: ECG signal features extraction. Ecuador Technical Chapters Meeting (ETCM), pp. 1–6. IEEE (2016)

    Google Scholar 

  26. Goya-Esteban, R., Barquero-Perez, O., Blanco-Velasco, M., Caamano-Fernandez, A.J., Garcia-Alberola, A., Rojo-Alvarez, J.L.: Nonparametric signal processing validation in T-wave alternans detection and estimation. IEEE Trans. Biomed. Eng. 61(4), 1328–1338 (2014)

    Article  Google Scholar 

  27. Cuesta-Frau, D., Micó-Tormos, P., Aboy, M., Biagetti, M.O., Austin, D., Quinteiro, R.A.: Enhanced modified moving average analysis of T-wave alternans using a curve matching method: a simulation study. Med. Biol. Eng. Comput. 47(3), 323–331 (2009)

    Article  Google Scholar 

  28. Smith, J.M., Clancy, E.A., Valeri, C.R., Ruskin, J.N., Cohen, R.J.: Electrical alternans and cardiac electrical instability. Circulation 77(1), 110–121 (1988)

    Article  Google Scholar 

  29. Nearing, B.D., Huang, A.H., Verrier, R.L.: Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Science 252(5004), 437–440 (1991)

    Article  Google Scholar 

  30. Burattini, L., Zareba, W., Couderc, J., Titlebaum, E., Moss, A.: Computer detection of non-stationary T wave alternans using a new correlation method. In: Computers in Cardiology, pp. 657–660. IEEE (1997)

    Google Scholar 

  31. Noohi, M., Sadr, A.: T wave detection by correlation method in the ECG signal. In: The 2nd International Conference on Computer and Automation Engineering (ICCAE), vol. 5, pp. 550–552 (2010)

    Google Scholar 

  32. Laguna, P., Ruiz, M., Moody, G., Mark, R.: Repolarization alternans detection using the KL transform and the beatquency spectrum. In: Computers in Cardiology, pp. 673–676. IEEE (1996)

    Google Scholar 

  33. Martinez, J.P., Olmos, S., Laguna, P.: Simulation study and performance evaluation of T-wave alternans detector. In: Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3, pp. 2291–2297. IEEE (2000)

    Google Scholar 

  34. Srikanth, T., Lin, D., Kanaan, N., Gu, H.: Presence of T wave alternans in the statistical context-a new approach to low amplitude alternans measurement. Comput. Cardiol. 29, 681–684 (2002)

    Article  Google Scholar 

  35. Strumillo, P., Ruta, J.: Poincare mapping for detecting abnormal dynamics of cardiac repolarization. IEEE Eng. Med. Biol. Mag. 21(1), 62–65 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nancy Betancourt , Carlos Almeida or Marco Flores-Calero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Betancourt, N., Almeida, C., Flores-Calero, M. (2019). T Wave Alternans Analysis in ECG Signal: A Survey of the Principal Approaches. In: Rocha, Á., Ferrás, C., Paredes, M. (eds) Information Technology and Systems. ICITS 2019. Advances in Intelligent Systems and Computing, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-030-11890-7_41

Download citation

Publish with us

Policies and ethics