Skip to main content

Role of Tissue Biopsy in Drug Development for Nonalcoholic Fatty Liver Disease and Other Metabolic Disorders

  • Chapter
  • First Online:
  • 784 Accesses

Abstract

Biopsy studies of metabolically-active tissues including liver, skeletal muscle and adipose tissue have helped delineate important aspects of the etiopathogenesis of diabetes and related cardiometabolic disorders. Tissue biopsy may also play a role in the development of new drugs. The most prominent example is the central place of liver histology in the assessment of efficacy and safety of new pharmacotherapies for nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). Several drugs are currently in phase 3 trials for this indication that involve paired liver biopsies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brunt EM, Wong VW, Nobili V, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 2015;1:15080.

    Article  PubMed  Google Scholar 

  2. Stefan N, Haring HU, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol. 2018. https://doi.org/10.1016/S2213-8587(18)30154-2.

  3. Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017;37(Suppl 1):81–4.

    Article  PubMed  Google Scholar 

  4. Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11–20.

    Article  PubMed  Google Scholar 

  5. Williams CD, Stengel J, Asike MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140(1):124–31.

    Article  PubMed  Google Scholar 

  6. Stine JG, Wentworth BJ, Zimmet A, et al. Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. Aliment Pharmacol Ther. 2018;48(7):696–703.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fassio E, Alvarez E, Dominguez N, Landeira G, Longo C. Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies. Hepatology. 2004;40(4):820–6.

    PubMed  Google Scholar 

  8. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34(3):274–85.

    Article  CAS  PubMed  Google Scholar 

  9. Singh S, Allen AM, Wang Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol. 2015;13(4):643–54 e1–9; quiz e39–40.

    Article  PubMed  Google Scholar 

  10. Wong VW, Wong GL, Choi PC, et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut. 2010;59(7):969–74.

    Article  PubMed  Google Scholar 

  11. Koehler E, Watt K, Charlton M. Fatty liver and liver transplantation. Clin Liver Dis. 2009;13(4):621–30.

    Article  PubMed  Google Scholar 

  12. Parikh ND, Marrero WJ, Wang J, et al. Projected increase in obesity and non-alcoholic-steatohepatitis-related liver transplantation waitlist additions in the United States. Hepatology. 2017. https://doi.org/10.1002/hep.29473.

  13. Yki-Jarvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014;2:901–10.

    Article  CAS  PubMed  Google Scholar 

  14. Roden M. Mechanisms of disease: hepatic steatosis in type 2 diabetes--pathogenesis and clinical relevance. Nat Clin Pract Endocrinol Metab. 2006;2(6):335–48.

    Article  CAS  PubMed  Google Scholar 

  15. Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: an update. Metabolism. 2016;65(8):1109–23.

    Article  CAS  PubMed  Google Scholar 

  16. Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62(1 Suppl):S47–64.

    Article  PubMed  Google Scholar 

  17. Neuschwander-Tetri BA, Clark JM, Bass NM, et al. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology. 2010;52(3):913–24.

    Article  CAS  PubMed  Google Scholar 

  18. Leite NC, Salles GF, Araujo AL, Villela-Nogueira CA, Cardoso CR. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int. 2009;29(1):113–9.

    Article  CAS  PubMed  Google Scholar 

  19. Subichin M, Clanton J, Makuszewski M, et al. Liver disease in the morbidly obese: a review of 1000 consecutive patients undergoing weight loss surgery. Surg Obes Relat Dis. 2015;11(1):137–41.

    Article  PubMed  Google Scholar 

  20. Radaelli MG, Martucci F, Perra S, et al. NAFLD/NASH in patients with type 2 diabetes and related treatment options. J Endocrinol Investig. 2018;41(5):509–21.

    Article  CAS  Google Scholar 

  21. Mantovani A, Zaza G, Byrne CD, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: a systematic review and meta-analysis. Metabolism. 2018;79:64–76.

    Article  CAS  PubMed  Google Scholar 

  22. Dunn W, Xu R, Wingard DL, et al. Suspected nonalcoholic fatty liver disease and mortality risk in a population-based cohort study. Am J Gastroenterol. 2008;103(9):2263–71.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol. 2016;65(3):589–600.

    Article  PubMed  Google Scholar 

  24. Seko Y, Yamaguchi K, Itoh Y. The genetic backgrounds in nonalcoholic fatty liver disease. Clin J Gastroenterol. 2018;11(2):97–102.

    Article  PubMed  Google Scholar 

  25. Ludwig J, Viggiano TR, McGill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980;55(7):434–8.

    CAS  PubMed  Google Scholar 

  26. Argo CK, Caldwell SH. Epidemiology and natural history of non-alcoholic steatohepatitis. Clin Liver Dis. 2009;13(4):511–31.

    Article  PubMed  Google Scholar 

  27. Caldwell S, Argo C. The natural history of non-alcoholic fatty liver disease. Dig Dis. 2010;28(1):162–8.

    Article  PubMed  CAS  Google Scholar 

  28. Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015;149(2):389–97 e10.

    Article  PubMed  Google Scholar 

  29. Hubscher SG. Histological assessment of non-alcoholic fatty liver disease. Histopathology. 2006;49(5):450–65.

    Article  CAS  PubMed  Google Scholar 

  30. Kleiner DE. Histopathology, grading and staging of nonalcoholic fatty liver disease. Minerva Gastroenterol Dietol. 2018;64(1):28–38.

    PubMed  Google Scholar 

  31. Bedossa P. Diagnosis of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: why liver biopsy is essential. Liver Int. 2018;38(Suppl 1):64–6.

    Article  PubMed  Google Scholar 

  32. Sanyal AJ, Chalasani N. Trials and tribulations in drug development for nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2014;12(12):2104–5.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57.

    Article  PubMed  Google Scholar 

  34. Konerman MA, Jones JC, Harrison SA. Pharmacotherapy for NASH: current and emerging. J Hepatol. 2018;68(2):362–75.

    Article  CAS  PubMed  Google Scholar 

  35. Siddiqui MS, Harrison SA, Abdelmalek MF, et al. Case definitions for inclusion and analysis of endpoints in clinical trials for nonalcoholic steatohepatitis through the lens of regulatory science. Hepatology. 2018;67(5):2001–12.

    Article  PubMed  Google Scholar 

  36. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94(9):2467–74.

    Article  CAS  PubMed  Google Scholar 

  37. Bedossa P, Poitou C, Veyrie N, et al. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology. 2012;56(5):1751–9.

    Article  PubMed  Google Scholar 

  38. Younossi ZM, Stepanova M, Rafiq N, et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology. 2011;53(6):1874–82.

    Article  PubMed  Google Scholar 

  39. Neuschwander-Tetri BA, Brunt EM, Wehmeier KR, Oliver D, Bacon BR. Improved nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-gamma ligand rosiglitazone. Hepatology. 2003;38(4):1008–17.

    Article  CAS  PubMed  Google Scholar 

  40. Lindor KD, Kowdley KV, Heathcote EJ, et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology. 2004;39(3):770–8.

    Article  CAS  PubMed  Google Scholar 

  41. Ratziu V, Giral P, Jacqueminet S, et al. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology. 2008;135(1):100–10.

    Article  CAS  PubMed  Google Scholar 

  42. Lutchman G, Modi A, Kleiner DE, et al. The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis. Hepatology. 2007;46(2):424–9.

    Article  CAS  PubMed  Google Scholar 

  43. Dixon JB, Anderson M, Cameron-Smith D, O’Brien PE. Sustained weight loss in obese subjects has benefits that are independent of attained weight. Obes Res. 2004;12(11):1895–902.

    Article  PubMed  Google Scholar 

  44. Pillai AA, Rinella ME. Non-alcoholic fatty liver disease: is bariatric surgery the answer? Clin Liver Dis. 2009;13(4):689–710.

    Article  PubMed  Google Scholar 

  45. Vilar-Gomez E, Chalasani N. Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers. J Hepatol. 2018;68(2):305–15.

    Article  CAS  PubMed  Google Scholar 

  46. Poynard T, Munteanu M, Charlotte F, et al. Diagnostic performance of a new noninvasive test for nonalcoholic steatohepatitis using a simplified histological reference. Eur J Gastroenterol Hepatol. 2018;30(5):569–77.

    PubMed  Google Scholar 

  47. Sanyal AJ, Friedman SL, McCullough AJ, et al. Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases-U.S. Food and Drug Administration Joint Workshop. Hepatology. 2015;61(4):1392–405.

    Article  PubMed  Google Scholar 

  48. Byrne CD, Targher G. Time to replace assessment of liver histology with MR-based imaging tests to assess efficacy of interventions for nonalcoholic fatty liver disease. Gastroenterology. 2016;150(1):7–10.

    Article  PubMed  Google Scholar 

  49. Li Q, Dhyani M, Grajo JR, Sirlin C, Samir AE. Current status of imaging in nonalcoholic fatty liver disease. World J Hepatol. 2018;10(8):530–42.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brunt EM, Tiniakos DG. Histopathology of nonalcoholic fatty liver disease. World J Gastroenterol. 2010;16(42):5286–96.

    Article  PubMed  PubMed Central  Google Scholar 

  51. European Association for the Study of the Liver, European Association for the Study of Diabetes, European Association for the Study of Obesity. EASL EASD EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388–402.

    Article  Google Scholar 

  52. Byrne CD, Targher G. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease: is universal screening appropriate? Diabetologia. 2016;59(6):1141–4.

    Article  CAS  PubMed  Google Scholar 

  53. National Institute for Health and Clinical Excellence. Non-alcoholic fatty liver disease (NAFLD): assessment and management. NICE guideline [NG49]. 2016.

    Google Scholar 

  54. Glen J, Floros L, Day C, Pryke R, Guideline Development Group. Non-alcoholic fatty liver disease (NAFLD): summary of NICE guidance. BMJ. 2016;354:i4428.

    Article  PubMed  Google Scholar 

  55. Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 2018;53(3):362–76.

    Article  CAS  PubMed  Google Scholar 

  56. Menghini G. One-second needle biopsy of the liver. Gastroenterology. 1958;35(2):190–9.

    CAS  PubMed  Google Scholar 

  57. Ghent CN. Percutaneous liver biopsy: reflections and refinements. Can J Gastroenterol. 2006;20(2):75–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Spengler EK, Loomba R. Recommendations for diagnosis, referral for liver biopsy, and treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mayo Clin Proc. 2015;90(9):1233–46.

    Article  PubMed  Google Scholar 

  59. Gunn NT, Shiffman ML. The use of liver biopsy in nonalcoholic fatty liver disease: when to biopsy and in whom. Clin Liver Dis. 2018;22(1):109–19.

    Article  PubMed  Google Scholar 

  60. Hannah WN Jr, Torres DM, Harrison SA. Nonalcoholic Steatohepatitis and endpoints in clinical trials. Gastroenterol Hepatol (N Y). 2016;12(12):756–63.

    Google Scholar 

  61. Sun TL, Liu Y, Sung MC, et al. Ex vivo imaging and quantification of liver fibrosis using second-harmonic generation microscopy. J Biomed Opt. 2010;15(3):036002.

    Article  PubMed  Google Scholar 

  62. Scupakova K, Soons Z, Ertaylan G, et al. Spatial systems lipidomics reveals nonalcoholic fatty liver disease heterogeneity. Anal Chem. 2018;90(8):5130–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pinelo E, Presa J. Outpatient percutaneous liver biopsy: still a good option. Eur J Intern Med. 2009;20(5):487–9.

    Article  PubMed  Google Scholar 

  64. Rockey DC, Caldwell SH, Goodman ZD, et al. Liver biopsy. Hepatology. 2009;49(3):1017–44.

    Article  PubMed  Google Scholar 

  65. Cadranel JF, Rufat P, Degos F. Practices of liver biopsy in France: results of a prospective nationwide survey. For the Group of Epidemiology of the French Association for the Study of the Liver (AFEF). Hepatology. 2000;32(3):477–81.

    Article  CAS  PubMed  Google Scholar 

  66. Barbois S, Arvieux C, Leroy V, et al. Benefit-risk of intraoperative liver biopsy during bariatric surgery: review and perspectives. Surg Obes Relat Dis. 2017;13(10):1780–6.

    Article  PubMed  Google Scholar 

  67. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015;149(2):367–78 e5; quiz e14–5.

    Article  PubMed  Google Scholar 

  68. Patel NS, Doycheva I, Peterson MR, et al. Effect of weight loss on magnetic resonance imaging estimation of liver fat and volume in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2015;13(3):561–568 e1.

    Article  PubMed  Google Scholar 

  69. Boyle M, Masson S, Anstee QM. The bidirectional impacts of alcohol consumption and the metabolic syndrome: cofactors for progressive fatty liver disease. J Hepatol. 2018;68(2):251–67.

    Article  PubMed  Google Scholar 

  70. Ajmera V, Belt P, Wilson LA, et al. Among patients with nonalcoholic fatty liver disease, modest alcohol use is associated with less improvement in histologic steatosis and steatohepatitis. Clin Gastroenterol Hepatol. 2018;16(9):1511–1520 e5.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lee Y, Doumouras AG, Yu J, et al. Complete resolution of nonalcoholic fatty liver disease after bariatric surgery: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018. https://doi.org/10.1016/j.cgh.2018.10.017.

  72. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.

    Article  PubMed  Google Scholar 

  73. Bedossa P, Consortium FP. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology. 2014;60(2):565–75.

    Article  CAS  PubMed  Google Scholar 

  74. Banini BA, Sanyal AJ. Current and future pharmacologic treatment of nonalcoholic steatohepatitis. Curr Opin Gastroenterol. 2017;33(3):134–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alkhouri N, Poordad F, Lawitz E. Management of nonalcoholic fatty liver disease: lessons learned from type 2 diabetes. Hepatol Commun. 2018;2(7):778–85.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Alkhouri N, Scott A. An update on the pharmacological treatment of nonalcoholic fatty liver disease: beyond lifestyle modications. Clin Liver Dis. 2018;11:82–6.

    Article  Google Scholar 

  77. Oseini AM, Cole BK, Issa D, Feaver RE, Sanyal AJ. Translating scientific discovery: the need for preclinical models of nonalcoholic steatohepatitis. Hepatol Int. 2018;12(1):6–16.

    Article  PubMed  Google Scholar 

  78. Jahn D, Kircher S, Hermanns HM, Geier A. Animal models of NAFLD from a hepatologist’s point of view. Biochim Biophys Acta Mol basis Dis. 2018. https://doi.org/10.1016/j.bbadis.2018.06.023.

  79. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Issa D, Patel V, Sanyal AJ. Future therapy for non-alcoholic fatty liver disease. Liver Int. 2018;38(Suppl 1):56–63.

    Article  PubMed  Google Scholar 

  81. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65.

    Article  CAS  PubMed  Google Scholar 

  82. Ratziu V, Harrison SA, Francque S, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150(5):1147–1159 e5.

    Article  CAS  PubMed  Google Scholar 

  83. Newman JD, Vani AK, Aleman JO, et al. The changing landscape of diabetes therapy for cardiovascular risk reduction: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(15):1856–69.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387(10019):679–90.

    Article  CAS  PubMed  Google Scholar 

  85. Honda Y, Imajo K, Kato T, et al. The selective SGLT2 inhibitor ipragliflozin has a therapeutic effect on nonalcoholic steatohepatitis in mice. PLoS One. 2016;11(1):e0146337.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kuchay MS, Krishan S, Mishra SK, et al. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: a randomized controlled trial (E-LIFT trial). Diabetes Care. 2018;41(8):1801–8.

    Article  CAS  PubMed  Google Scholar 

  87. Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010;2010:476279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bjornholm M, Zierath JR. Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. Biochem Soc Trans. 2005;33(Pt 2):354–7.

    Article  CAS  PubMed  Google Scholar 

  89. Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hojlund K, Beck-Nielsen H. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle: markers or mediators of insulin resistance in type 2 diabetes? Curr Diabetes Rev. 2006;2(4):375–95.

    Article  PubMed  Google Scholar 

  91. Hojlund K, Staehr P, Hansen BF, et al. Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes. Diabetes. 2003;52(6):1393–402.

    Article  CAS  PubMed  Google Scholar 

  92. Workeneh B, Bajaj M. The regulation of muscle protein turnover in diabetes. Int J Biochem Cell Biol. 2013;45(10):2239–44.

    Article  CAS  PubMed  Google Scholar 

  93. Bergström J. Muscle electrolytes in man, determined by neutron activation analysis on needle biopsy specimens, a study in normal subjects, kidney patients, and patients with chronic diarrhoea. Scand J Clin Lab Invest. 1962;14:1–110.

    Article  Google Scholar 

  94. Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975;35(7):609–16.

    Article  CAS  PubMed  Google Scholar 

  95. Hojlund K, Yi Z, Hwang H, et al. Characterization of the human skeletal muscle proteome by one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. Mol Cell Proteomics. 2008;7(2):257–67.

    Article  CAS  PubMed  Google Scholar 

  96. Tarnopolsky MA, Pearce E, Smith K, Lach B. Suction-modified Bergstrom muscle biopsy technique: experience with 13,500 procedures. Muscle Nerve. 2011;43(5):717–25.

    Article  PubMed  Google Scholar 

  97. Shanely RA, Zwetsloot KA, Triplett NT, et al. Human skeletal muscle biopsy procedures using the modified Bergstrom technique. J Vis Exp. 2014;10(91):51812.

    Google Scholar 

  98. Duan Y, Li F, Tan B, Yao K, Yin Y. Metabolic control of myofibers: promising therapeutic target for obesity and type 2 diabetes. Obes Rev. 2017;18(6):647–59.

    Article  PubMed  Google Scholar 

  99. Albers PH, Pedersen AJ, Birk JB, et al. Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes. Diabetes. 2015;64(2):485–97.

    Article  CAS  PubMed  Google Scholar 

  100. Marin P, Andersson B, Krotkiewski M, Bjorntorp P. Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care. 1994;17(5):382–6.

    Article  CAS  PubMed  Google Scholar 

  101. Gaster M, Staehr P, Beck-Nielsen H, Schroder HD, Handberg A. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes. 2001;50(6):1324–9.

    Article  CAS  PubMed  Google Scholar 

  102. Stuart CA, McCurry MP, Marino A, et al. Slow-twitch fiber proportion in skeletal muscle correlates with insulin responsiveness. J Clin Endocrinol Metab. 2013;98(5):2027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stuart CA, South MA, Lee ML, et al. Insulin responsiveness in metabolic syndrome after eight weeks of cycle training. Med Sci Sports Exerc. 2013;45(11):2021–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Palsgaard J, Brons C, Friedrichsen M, et al. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways. PLoS One. 2009;4(8):e6575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Lambadiari V, Triantafyllou K, Dimitriadis GD. Insulin action in muscle and adipose tissue in type 2 diabetes: the significance of blood flow. World J Diabetes. 2015;6(4):626–33.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Laughlin MH. Physical activity-induced remodeling of vasculature in skeletal muscle: role in treatment of type 2 diabetes. J Appl Physiol (1985). 2016;120(1):1–16.

    Article  CAS  Google Scholar 

  107. Lettner A, Roden M. Ectopic fat and insulin resistance. Curr Diab Rep. 2008;8(3):185–91.

    Article  CAS  PubMed  Google Scholar 

  108. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One. 2010;5(5):e10805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Varma V, Yao-Borengasser A, Rasouli N, et al. Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action. Am J Physiol Endocrinol Metab. 2009;296(6):E1300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012;15(5):635–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nicholson T, Church C, Baker DJ, Jones SW. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. J Inflamm (Lond). 2018;15:9.

    Article  CAS  Google Scholar 

  113. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785–9.

    Article  CAS  PubMed  Google Scholar 

  114. Kelley DE, Mokan M, Simoneau JA, Mandarino LJ. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest. 1993;92(1):91–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297(3):E578–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Martins AR, Nachbar RT, Gorjao R, et al. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis. 2012;11:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Phielix E, Jelenik T, Nowotny P, Szendroedi J, Roden M. Reduction of non-esterified fatty acids improves insulin sensitivity and lowers oxidative stress, but fails to restore oxidative capacity in type 2 diabetes: a randomised clinical trial. Diabetologia. 2014;57(3):572–81.

    Article  CAS  PubMed  Google Scholar 

  118. Makimura H, Stanley TL, Suresh C, et al. Metabolic effects of long-term reduction in free fatty acids with acipimox in obesity: a randomized trial. J Clin Endocrinol Metab. 2016;101(3):1123–33.

    Article  CAS  PubMed  Google Scholar 

  119. Machado MV, Ferreira DM, Castro RE, et al. Liver and muscle in morbid obesity: the interplay of fatty liver and insulin resistance. PLoS One. 2012;7(2):e31738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Camastra S, Vitali A, Anselmino M, et al. Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric surgery. Sci Rep. 2017;7(1):9007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Pedersen BK. Muscles and their myokines. J Exp Biol. 2011;214(Pt 2):337–46.

    Article  CAS  PubMed  Google Scholar 

  122. Delezie J, Handschin C. Endocrine crosstalk between skeletal muscle and the brain. Front Neurol. 2018;9:698.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sakuma K, Yamaguchi A. Drugs of muscle wasting and their therapeutic targets. Adv Exp Med Biol. 2018;1088:463–81.

    Article  PubMed  Google Scholar 

  124. Bouchonville MF, Villareal DT. Sarcopenic obesity: how do we treat it? Curr Opin Endocrinol Diabetes Obes. 2013;20(5):412–9.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Consitt LA, Clark BC. The vicious cycle of myostatin signaling in sarcopenic obesity: myostatin role in skeletal muscle growth, insulin signaling and implications for clinical trials. J Frailty Aging. 2018;7(1):21–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol. 2016;229(2):R67–81.

    Article  CAS  PubMed  Google Scholar 

  127. Allen DL, Hittel DS, McPherron AC. Expression and function of myostatin in obesity, diabetes, and exercise adaptation. Med Sci Sports Exerc. 2011;43(10):1828–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Morley JE. Pharmacologic options for the treatment of sarcopenia. Calcif Tissue Int. 2016;98(4):319–33.

    Article  CAS  PubMed  Google Scholar 

  129. Garito T, Roubenoff R, Hompesch M, et al. Bimagrumab improves body composition and insulin sensitivity in insulin-resistant individuals. Diabetes Obes Metab. 2018;20(1):94–102.

    Article  CAS  PubMed  Google Scholar 

  130. Nikoulina SE, Ciaraldi TP, Abrams-Carter L, et al. Regulation of glycogen synthase activity in cultured skeletal muscle cells from subjects with type II diabetes: role of chronic hyperinsulinemia and hyperglycemia. Diabetes. 1997;46(6):1017–24.

    Article  CAS  PubMed  Google Scholar 

  131. Beck-Nielsen H, Vaag A, Poulsen P, Gaster M. Metabolic and genetic influence on glucose metabolism in type 2 diabetic subjects--experiences from relatives and twin studies. Best Pract Res Clin Endocrinol Metab. 2003;17(3):445–67.

    Article  CAS  PubMed  Google Scholar 

  132. Thingholm TE, Bak S, Beck-Nielsen H, Jensen ON, Gaster M. Characterization of human myotubes from type 2 diabetic and nondiabetic subjects using complementary quantitative mass spectrometric methods. Mol Cell Proteomics. 2011;10(9):M110 006650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Aas V, Bakke SS, Feng YZ, et al. Are cultured human myotubes far from home? Cell Tissue Res. 2013;354(3):671–82.

    Article  CAS  PubMed  Google Scholar 

  134. Costford SR, Crawford SA, Dent R, McPherson R, Harper ME. Increased susceptibility to oxidative damage in post-diabetic human myotubes. Diabetologia. 2009;52(11):2405–15.

    Article  CAS  PubMed  Google Scholar 

  135. Al-Khalili L, de Castro Barbosa T, Östling J, Massart J, Katyama M, Nyström C, Oscarsson J, Zierath JR. Profiling of human myotubes reveals an intrinsic proteomic signature associated with type 2 diabetes. Transl Proteomics. 2014;2:25–38.

    Article  CAS  Google Scholar 

  136. Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359–404.

    Article  CAS  PubMed  Google Scholar 

  137. Sattar N, Gill JM. Type 2 diabetes as a disease of ectopic fat. BMC Med. 2014;12:123.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Smith U. Abdominal obesity: a marker of ectopic fat accumulation. J Clin Invest. 2015;125(5):1790–2.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Piche ME, Poirier P, Lemieux I, Despres JP. Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update. Prog Cardiovasc Dis. 2018;61(2):103–13.

    Article  PubMed  Google Scholar 

  140. Trujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr Rev. 2006;27(7):762–78.

    Article  CAS  PubMed  Google Scholar 

  141. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. White U, Ravussin E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia. 2019;62:17–23.

    Article  PubMed  Google Scholar 

  143. Appari M, Channon KM, McNeill E. Metabolic regulation of adipose tissue macrophage function in obesity and diabetes. Antioxid Redox Signal. 2018;29(3):297–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Labrecque J, Laforest S, Michaud A, Biertho L, Tchernof A. Impact of bariatric surgery on white adipose tissue inflammation. Can J Diabetes. 2017;41(4):407–17.

    Article  PubMed  Google Scholar 

  145. Carswell KA, Lee MJ, Fried SK. Culture of isolated human adipocytes and isolated adipose tissue. Methods Mol Biol. 2012;806:203–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Petrus P, Rosqvist F, Edholm D, et al. Saturated fatty acids in human visceral adipose tissue are associated with increased 11- beta-hydroxysteroid-dehydrogenase type 1 expression. Lipids Health Dis. 2015;14:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Verboven K, Wouters K, Gaens K, et al. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci Rep. 2018;8(1):4677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zierath JR, Livingston JN, Thorne A, et al. Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia. 1998;41(11):1343–54.

    Article  CAS  PubMed  Google Scholar 

  149. Dusserre E, Moulin P, Vidal H. Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim Biophys Acta. 2000;1500(1):88–96.

    Article  CAS  PubMed  Google Scholar 

  150. Mutch DM, Tordjman J, Pelloux V, et al. Needle and surgical biopsy techniques differentially affect adipose tissue gene expression profiles. Am J Clin Nutr. 2009;89(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  151. Murphy J, Moullec G, Santosa S. Factors associated with adipocyte size reduction after weight loss interventions for overweight and obesity: a systematic review and meta-regression. Metabolism. 2017;67:31–40.

    Article  CAS  PubMed  Google Scholar 

  152. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–18.

    Article  PubMed  Google Scholar 

  153. Fonseca V. Effect of thiazolidinediones on body weight in patients with diabetes mellitus. Am J Med. 2003;115(Suppl 8A):42S–8S.

    Article  CAS  PubMed  Google Scholar 

  154. de Souza CJ, Eckhardt M, Gagen K, et al. Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes. 2001;50(8):1863–71.

    Article  PubMed  Google Scholar 

  155. Hammarstedt A, Andersson CX, Rotter Sopasakis V, Smith U. The effect of PPARgamma ligands on the adipose tissue in insulin resistance. Prostaglandins Leukot Essent Fatty Acids. 2005;73(1):65–75.

    Article  CAS  PubMed  Google Scholar 

  156. McLaughlin TM, Liu T, Yee G, et al. Pioglitazone increases the proportion of small cells in human abdominal subcutaneous adipose tissue. Obesity (Silver Spring). 2010;18(5):926–31.

    Article  CAS  Google Scholar 

  157. Trujillo ME, Scherer PE. Adiponectin--journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med. 2005;257(2):167–75.

    Article  CAS  PubMed  Google Scholar 

  158. Rasouli N, Yao-Borengasser A, Miles LM, Elbein SC, Kern PA. Increased plasma adiponectin in response to pioglitazone does not result from increased gene expression. Am J Physiol Endocrinol Metab. 2006;290(1):E42–6.

    Article  CAS  PubMed  Google Scholar 

  159. Hollis G, Huber R. 11beta-Hydroxysteroid dehydrogenase type 1 inhibition in type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  160. Stefan N, Ramsauer M, Jordan P, et al. Inhibition of 11beta-HSD1 with RO5093151 for non-alcoholic fatty liver disease: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2(5):406–16.

    Article  CAS  PubMed  Google Scholar 

  161. Gibbs JP, Emery MG, McCaffery I, et al. Population pharmacokinetic/pharmacodynamic model of subcutaneous adipose 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activity after oral administration of AMG 221, a selective 11beta-HSD1 inhibitor. J Clin Pharmacol. 2011;51(6):830–41.

    Article  CAS  PubMed  Google Scholar 

  162. Thyagarajan B, Foster MT. Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm Mol Biol Clin Investig. 2017. https://doi.org/10.1515/hmbci-2017-0016.

  163. Stanford KI, Goodyear LJ. Muscle-adipose tissue cross talk. Cold Spring Harb Perspect Med. 2018. https://doi.org/10.1101/cshperspect.a029801.

  164. Perakakis N, Triantafyllou GA, Fernandez-Real JM, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13(6):324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kajimura S. Engineering fat cell fate to fight obesity and metabolic diseases. Keio J Med. 2015;64(4):65.

    Article  PubMed  Google Scholar 

  166. Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15(9):639–60.

    Article  CAS  PubMed  Google Scholar 

  167. Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, Torres N, Tovar AR. Understanding the biology of thermogenic fat: is browning a new approach to the treatment of obesity? Arch Med Res. 2017;48(5):401–13.

    Article  CAS  PubMed  Google Scholar 

  168. Dinas PC, Valente A, Granzotto M, et al. Browning formation markers of subcutaneous adipose tissue in relation to resting energy expenditure, physical activity and diet in humans. Horm Mol Biol Clin Investig. 2017. https://doi.org/10.1515/hmbci-2017-0008.

  169. Kiefer FW. The significance of beige and brown fat in humans. Endocr Connect. 2017;6(5):R70–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mukherjee J, Baranwal A, Schade KN. Classification of therapeutic and experimental drugs for brown adipose tissue activation: potential treatment strategies for diabetes and obesity. Curr Diabetes Rev. 2016;12(4):414–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Krentz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krentz, A.J., Bedossa, P. (2019). Role of Tissue Biopsy in Drug Development for Nonalcoholic Fatty Liver Disease and Other Metabolic Disorders. In: Krentz, A., Weyer, C., Hompesch, M. (eds) Translational Research Methods in Diabetes, Obesity, and Nonalcoholic Fatty Liver Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-11748-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11748-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11747-4

  • Online ISBN: 978-3-030-11748-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics