Skip to main content

Non-covalent Interactions in Selected Transition Metal Complexes

  • Chapter
  • First Online:
Book cover Transition Metals in Coordination Environments

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 29))

Abstract

Chemical bonding in transition metal complexes is typically described by Dewar–Chatt–Duncanson model which separates donation (ligand → metal) and back-donation (metal → ligand) charge transfer processes—these are with no doubt crucial factors which determine a number of properties of metal complexes. This contribution highlights the importance of various non-covalent interactions including untypical homopolar dihydrogen contacts C–H•••H–C in metal complexes. The selected systems are: (1) Zn(II) species containing NTA (nitrotriacetic acid ), NTPA (nitrotri-3-propanoic), BPy (2,2′-bipyridyl) ligands, (2) cis-NiL2–hexane (L–thiourea -based ligand) complex, and (3) hydrogen storage materials LiNMe2BH3 and KNMe2BH3. It is shown consistently by various methods and bonding descriptors including for example the charge and energy decomposition scheme ETS-NOCV , Interacting Quantum Atoms (IQA) , Reduced Density Gradient (NCI) , Quantum Theory of Atoms in Molecules (QTAIM) and NMR spin-spin 1J(C–H) coupling constants, that London dispersion dominated C–H•••H–C interactions and other more typical hydrogen bonds (e.g. C–H•••N, C–H•••O) driven mostly by electrostatics, are crucial for determination of the structures and stability of the selected metal complexes. Although London dispersion forces are the fundamental factor (~70% of the overall stabilization) contributing to C–H•••H–C interactions, the charge delocalization (outflow of electrons from the σ(C–H) bonds engaged in C–H•••H–C and the accumulation in the interatomic H•••H region) as well as electrostatic terms are also non-negligible (~30%). Remarkably, hydride–hydride interactions B–H•••H–B in LiNMe2BH3 are found to be repulsive due to dominant destabilizing electrostatic contribution as opposed to stabilizing C–H•••H–C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Dewar, MJS (1951) Bull Soc Chim 18:C71–C79 (b) Chatt J, Duncanson JA (1953) J Chem Soc 3:2939–2943 (c) Frenking G, Shaik S (eds) (2014) The chemical bond. Fundamental aspects of chemical bonding (part 1), chemical bonding across the periodic table (part 2), Wiley-VCH, Weinheim

    Google Scholar 

  2. Zhao L, von Hopffgarten M, Andrada DM, Frenking G (2018) WIREs Comput Mol Sci 8:e1345. https://doi.org/10.1002/wcms.1345

    Article  CAS  Google Scholar 

  3. Brocławik E, Załucka J, Kozyra P, Mitoraj MP, Datka J (2011) Catal Today 169(1):45–51

    Article  Google Scholar 

  4. Broclawik E, Załucka J, Kozyra P, Mitoraj MP, Datka J (2010) J Phys Chem C 114(21):9808–9816

    Article  CAS  Google Scholar 

  5. Rejmak P, Mitoraj MP, Broclawik E (2010) Phys Chem Chem Phys 12(10):2321–2330

    Article  CAS  Google Scholar 

  6. Wagner JP, Schreiner PR (2015) Angew Chem Int Ed 54:14

    Google Scholar 

  7. Liptrot DJ, Power PP (2017) Nat Rev Chem 1:0004

    Article  Google Scholar 

  8. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  9. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456

    Article  CAS  Google Scholar 

  10. Wolters LP, Koekkoek R, Bickelhaupt FM (2015) ACS Catal 5:5766

    Article  CAS  Google Scholar 

  11. Matta CF, Hernández-Trujillo J, Tang TH, Bader RFW (2003) Chem Eur J 9:1940

    Article  CAS  Google Scholar 

  12. Poater J, Solà M, Bickelhaupt FM (2006) Chem Eur J 12:2889

    Article  CAS  Google Scholar 

  13. Bader RFW (2006) Chem Eur J 12:2896

    Article  CAS  Google Scholar 

  14. Pendás AM, Francisco E, Blanco MA, Gatti C (2007) Chem Eur J 13:9362

    Article  Google Scholar 

  15. Eskandari K, Alsenoy CV (2014) J Comput Chem 35:1883

    Article  CAS  Google Scholar 

  16. Cukrowski I (2015) Comput Theor Chem 1066:62

    Article  CAS  Google Scholar 

  17. Weinhold F, Schleyer PR, McKee WC (2014) J Comput Chem 35:1499

    Article  CAS  Google Scholar 

  18. Matta CF, Sadjadi SA, Braden DA, Frenking G (2016) J Comput Chem 37:143

    Article  CAS  Google Scholar 

  19. Cukrowski I, Sagan F, Mitoraj MP (2016) J Comput Chem 37:2783

    Article  CAS  Google Scholar 

  20. Ravindran P, Vajeeston P, Vidya R, Kjekshus A, Fjellvåg H (2002) Phys Rev Lett 89:106403

    Article  CAS  Google Scholar 

  21. Schouwink P, Hagemann H, Embs JP, Anna VD, Černy R (2015) J Phys: Condens Matter 27:265403

    CAS  Google Scholar 

  22. Wolstenholme DJ, Dobson JL, McGrady GS (2015) Dalton Trans 44:9718 and references therein

    Article  CAS  Google Scholar 

  23. Sagan F, Filas R, Mitoraj MP (2016) Crystals 6:28

    Article  Google Scholar 

  24. Echeverría J, Aullón G, Alvarez S (2017) Dalton Trans 46:2844

    Article  Google Scholar 

  25. Yourdkhani S, Jabłoński M, Echeverría J (2017) Phys Chem Chem Phys 19:28044

    Article  CAS  Google Scholar 

  26. Echeverría J (2017) Cryst Growth Des 17:2097

    Article  Google Scholar 

  27. Echeverría J, Aullón G, Alvarez S (2017) Int J Quantum Chem 117:e25432

    Article  Google Scholar 

  28. Custelcean R, Jackson JE (2001) Chem Rev 101:1963

    Article  CAS  Google Scholar 

  29. Mitoraj MP (2011) J Phys Chem A 115:14708

    Article  CAS  Google Scholar 

  30. Grabowski SJ, Ruipérez F (2016) Phys Chem Chem Phys 18:12810

    Article  CAS  Google Scholar 

  31. Sagan F, Piękoś Ł, Andrzejak M, Mitoraj MP (2015) Chem Eur J 21:15299

    Article  CAS  Google Scholar 

  32. Belkova NV, Epstein LM, Filippov OA, Shubina ES (2016) Chem Rev 116:8545

    Article  CAS  Google Scholar 

  33. Gamez P, Mooibroek TJ, Teat SJ, Reedijk J (2007) Acc Chem Res 40:435

    Article  CAS  Google Scholar 

  34. Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011) Angew Chem Int Ed. 50:9564

    Google Scholar 

  35. Safin DA, Pialat A, Leitch AA, Tumanov NA, Korobkov I, Filinchuk Y, Brusso JL, Murugesu M (2015) Chem Commun 51:9547

    Article  CAS  Google Scholar 

  36. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748

    Article  CAS  Google Scholar 

  37. Scheiner S (2013) Acc Chem Res 46:280

    Article  CAS  Google Scholar 

  38. Bauzá A, Mooibroek T, Frontera A (2016) Chem Rec 16:473

    Article  Google Scholar 

  39. Grabowski SJ, Sokalski WA (2017) Phys Chem Chem Phys 18:1569

    Article  CAS  Google Scholar 

  40. Gleiter R, Haberhauer G, Werz DB, Rominger F, Bleiholder C (2018) Chem Rev 118:2010

    Article  CAS  Google Scholar 

  41. Grabowski SJ (2006) Hydrogen bonding—new insights. Springer, Dordrecht

    Book  Google Scholar 

  42. Scheiner S (1997) Hydrogen bonding a theoretical perspective. Oxford University Press Inc., New York

    Google Scholar 

  43. Grabowski SJ (2016) Crystals 6:59

    Article  Google Scholar 

  44. Grabowski SJ (2011) Chem Rev 111:2597 and references therein

    Article  CAS  Google Scholar 

  45. Petrović P, Djukic JP, Hansen A, Bannwarth C, Grimme S (2016) Non‐covalent stabilization in transition metal coordination and organometallic complexes, Editors(s): Abel M. MaharramovKamran T. MahmudovMaximilian N. KopylovichArmando J. L. Pombeiro, Wiley, Print ISBN:9781119109891

    Google Scholar 

  46. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  47. Blanco MA, Pendás AM, Francisco E (2005) J Chem Theory Comput 1:1096

    Article  CAS  Google Scholar 

  48. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498

    Article  CAS  Google Scholar 

  49. Mitoraj M, Michalak A, Ziegler T (2009) J Chem Theory Comput 5:962

    Article  CAS  Google Scholar 

  50. Cukrowski I, Govender KK, Mitoraj MP, Srebro M (2011) J Phys Chem A 115:12746

    Article  CAS  Google Scholar 

  51. Cukrowski I, de Lange JH, Mitoraj MP (2014) J Phys Chem A 118:623

    Article  CAS  Google Scholar 

  52. Safin DA, Babashkina MG, Robeyns K, Mitoraj MP, Kubisiak P, Garcia Y (2015) Chem Eur J 21:16679

    Article  CAS  Google Scholar 

  53. Hancock RD, de Sousa AS, Walton GB, Reibenspies JH (2007) Inorg Chem 46:4749

    Article  CAS  Google Scholar 

  54. Hambley TW (1986) J Chem Soc Dalton Trans 565

    Google Scholar 

  55. Hancock RD, Martell AE (1989) Chem Rev 89:1875

    Article  CAS  Google Scholar 

  56. Smith RM, Martell AE (eds) (2004) NIST standard reference database 46. NIST critically selected stability constants of metal complexes database; Version 8.0; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD

    Google Scholar 

  57. Echeverría J, Aullón G, Danovich D, Shaik S, Alvarez S (2011) Nat Chem 3:323

    Article  Google Scholar 

  58. Krapp A, Frenking G, Uggerud E (2008) Chem Eur J 14:4028

    Article  CAS  Google Scholar 

  59. Wang C, Mo Y, Wagner JP, Schreiner PR, Jemmis ED, Danovich D, Shaik S (2015) J Chem Theory Comput 11:1621

    Article  CAS  Google Scholar 

  60. Jahiruddin S, Mandal N, Datta A (2018) Chem Phys Chem 19:67

    Article  CAS  Google Scholar 

  61. Dutta B, Pratik SM, Jana S, Sinha C, Datta A, Hedayetullah Mir M (2018) ChemistrySelect 3:4289

    Article  CAS  Google Scholar 

  62. Mandal N, Pratik SM, Datta A (2017) J Phys Chem B 121:825

    Article  CAS  Google Scholar 

  63. de Almeida LR, Carvalho Jr PS, Napolitano HB, Oliveira SS, Camargo AJ, Figueredo AS, de Aquino GLB, Carvalho-Silva VH (2017) Cryst Growth Des 17(10):5145

    Google Scholar 

  64. (a) Rösel S, Quanz H, Logemann C, Becker J, Mossou E, Canadillas-Delgado L, Caldeweyher E, Grimme S, Schreiner PR (2017) J Am Chem Soc 139(22):7428 (b) Schneider WB, Bistoni G, Sparta M, Saitow M, Riplinger C, Auer AA, Neese FJ (2016) Chem Theory Comput 12:4778–4792 (c) Lu Q, Neese F, Bistoni G (2018) Angew Chem Int Ed 57:4760–4764

    Google Scholar 

  65. Černý R, Ravnsbæk DB, Schouwink P, Filinchuk Y, Penin N, Teyssier J, Smrčok L, Jensen TR (2012) J Phys Chem C 116:1563

    Article  Google Scholar 

  66. Wolstenholme DJ, Flogeras J, Che FN, Decken A, McGrady GS (2013) J Am Chem Soc 135:2439

    Article  CAS  Google Scholar 

  67. Wolstenholme DJ, Traboulsee KT, Hua Y, Calhoun LA, McGrady GS (2012) Chem Commun 48:2597

    Article  CAS  Google Scholar 

  68. Černý R, Kim KC, Penin N, D’Anna V, Hagemann H, Sholl DS (2010) J Phys Chem C 114:19127

    Article  Google Scholar 

  69. Ravnsbæk D, Filinchuk Y, Cerenius Y, Jakobsen HJ, Besenbacher F, Skibsted J, Jensen TR (2009) Angew Chem Int Ed 48:6659

    Article  Google Scholar 

Download references

Acknowledgements

DFT calculations were partially performed using the PL-Grid Infrastructure and resources provided by the ACC Cyfronet AGH (Cracow, Poland). M. P. M. acknowledges the financial support of the Polish National Science Center within the Sonata Bis Project 2017/26/E/ST4/00104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz P. Mitoraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagan, F., Mitoraj, M.P. (2019). Non-covalent Interactions in Selected Transition Metal Complexes. In: Broclawik, E., Borowski, T., Radoń, M. (eds) Transition Metals in Coordination Environments. Challenges and Advances in Computational Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-11714-6_3

Download citation

Publish with us

Policies and ethics