Skip to main content

Model of Coupled System of Fractional Reaction-Diffusion Within a New Fractional Derivative Without Singular Kernel

  • Chapter
  • First Online:
Fractional Derivatives with Mittag-Leffler Kernel

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 194))

Abstract

In this chapter, the approximate analytical solutions of a new reaction-diffusion fractional time model are studied. For this analysis is used the p-homotopy transform method based on different kernels (power, exponential and Mittag-Leffler). The system nonlinearities are addressed by the Adomian polynomials. The system convergence is studied by determining the interval of the convergence by \(\hbar \)-curves, as well as, searching for the optimal value of \(\hbar \) which minimize the residual error. Therefore, the optimal \(\hbar \) value is calculated to estimate the order \(\beta \) error. At the end of the chapter, we explained the obtained behavior by plotting the solutions in 3D. The results are accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merkin, J.H., Needham, D.J., Scott, S.K.: Coupled reaction-diffusion waves in an isothermal autocatalytic chemical system. IMA J. Appl. Math. 50, 43–76 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  3. Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971)

    Article  MATH  Google Scholar 

  4. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular Kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  5. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular Kernel. Theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  6. Alsaedi, A., Baleanu, D., Etemad, S., Rezapour, S.: On coupled systems of time-fractional differential problems by using a new fractional derivative. J. Funct. Spaces 1, 1–16 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Atangana, A., Nieto, J.J.: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–7 (2015)

    Google Scholar 

  8. Atangana, A.: On the new fractional derivative and application to nonlinear fishers reaction diffusion equation. App. Math. Comput. 273, 948–956 (2016)

    Article  MathSciNet  Google Scholar 

  9. Atangana, A., Badr, S.T.A.: Analysis of the Keller-Segel model with a fractional derivative without singular Kernel. Entropy 17, 4439–4453 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Atangana, A., Badr, S.T.A.: Extension of the RLC electrical circuit to fractional derivative without singular Kernel. Adv. Mech. Eng. 7(6), 1–6 (2015)

    Article  Google Scholar 

  11. Atangana, A., Badr, S.T.A.: New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative. Arab. J. Geosci. 9(1), 1–8 (2016)

    Article  Google Scholar 

  12. Djida, J.D., Atangana, A., Area, I.: Numerical computation of a fractional derivative with non-local and non-singular Kernel. Math. Model. Nat. Phenom. 12(3), 4–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Koca, I.: Analysis of Rubella disease model with non-local and non-singular fractional derivatives. Int. J. Optim. Control. Theor. Appl. (IJOCTA) 8(1), 17–25 (2017)

    Article  MathSciNet  Google Scholar 

  14. Abro, K.A., Hussain, M., Baig, M.M.: An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana-Baleanu fractional derivatives. Eur. Phys. J. Plus 132(10), 1–14 (2017)

    Google Scholar 

  15. Khan, A., Abro, K.A., Tassaddiq, A., Khan, I.: Atangana-Baleanu and Caputo-Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: a comparative study. Entropy 19(8), 1–12 (2017)

    Article  Google Scholar 

  16. Alkahtani, B.S.T., Atangana, A., Koca, I.: Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators. J. Nonlinear Sci. Appl. 10(6), 3191–3200 (2017)

    Article  MathSciNet  Google Scholar 

  17. Singh, J., Kumar, D., Baleanu, D.: On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-Leffler type Kernel. Chaos Interdiscip. J. Nonlinear Sci. 27(10), 1–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar, D., Singh, J., Baleanu, D.: Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type Kernel. Phys. A Stat. Mech. Appl. 492, 155–167 (2018)

    Article  MathSciNet  Google Scholar 

  19. El-Tawil, M.A., Huseen, S.N.: The q-homotopy analysis method (q-ham). Int. J. Appl. Math. Mech. 8(15), 51–75 (2012)

    Google Scholar 

  20. Huseen, S.N., Grace, S.R., El-Tawil, M.A.: The optimal q-homotopy analysis method (Oq-HAM). Int. J. Comput. Technol. 11(8), 2859–2866 (2013)

    Article  Google Scholar 

  21. Iyiola, O.S.: q-Homotopy analysis method and application to fingero-imbibition phenomena in double phase flow through porous media. Asian J. Curr. Eng. Math. 2(4), 283–286 (2013)

    MathSciNet  Google Scholar 

  22. Liao, S.-J.: The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. thesis, Shanghai Jiao Tong University (1992)

    Google Scholar 

  23. Liao, S.-J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  24. Liao, S.-J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Liao, S.-J.: Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 169, 1186–1194 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Mohamed, M.S., Hamed, Y.S.: Solving the convection-diffusion equation by means of the optimal q-homotopy analysis method (Oq-HAM). Results Phys. 6, 20–25 (2016)

    Article  MATH  Google Scholar 

  27. Saad, K.M., AL-Shomrani, A.A.: An application of homotopy analysis transform method for Riccati differential equation of fractional order. J. Fract. Calc. Appl. 7, 61–72 (2016)

    MathSciNet  Google Scholar 

  28. Kumar, D., Singh, J., Baleanu, D.: A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves. Math. Methods Appl. Sci. 40(15), 5642–5653 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saad, K.M., AL-Shareef, E.H., Mohamed, M.S., Yang, X.J.: Optimal q-homotopy analysis method for time-space fractional gas dynamics equation. Eur. Phys. J. Plus 132(1), 1–11 (2017)

    Article  Google Scholar 

  30. Khan, Y., Austin, F.: Application of the Laplace decomposition method to nonlinear homogeneous and non-homogenous advection equations. Z. Nat. Sect. A 65, 849–853 (2010)

    Google Scholar 

  31. Elsaid, A.: Fractional differential transform method combined with the Adomian polynomials. Appl. Math. Comput. 218, 6899–6911 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Yin, X.B., Kumar, S., Kumar, D.: A modified homotopy analysis method for solution of fractional wave equations. Adv. Fract. Dyn. Mech. Eng. 7(12), 1–8 (2015)

    Google Scholar 

  33. Abbasbandy, S., Jalili, M.: Determination of optimal convergence-control parameter value in homotopy analysis method. Numer. Algorithms 64(4), 593–605 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Abbasbandy, S., Shivanian, E.: Predictor homotopy analysis method and its application to some nonlinear problems. Commun. Nonlinear Sci. Numer. Simulat. 16, 2456–2468 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Abo-Dahab, S.M., Mohamed, M.S., Nofal, T.A.: A one step optimal homotopy analysis method for propagation of harmonic waves in nonlinear generalized magnetothermoelasticity with two relaxation times under influence of rotation. Abstract and Applied Analysis, vol. 1, pp. 1–15. Hindawi Publishing Corporation, Cairo (2013)

    Google Scholar 

  36. Ghanbari, M., Abbasbandy, S., Allahviranloo, T.: A new approach to determine the convergence-control parameter in the application of the homotopy analysis method to systems of linear equations. Appl. Comput. Math. 12(3), 355–364 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Gondal, M.A., Arife, A.S., Khan, M., Hussain, I.: An efficient numerical method for solving linear and nonlinear partial differential equations by combining homotopy analysis and transform method. World Appl. Sci. J. 14(12), 1786–1791 (2011)

    Google Scholar 

  38. Liao, S.-J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15(8), 2003–2016 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Singh, J., Kumar, D., Swroop, R.: Numerical solution of time- and space-fractional coupled burgers equations via homotopy algorithm. Alex. Eng. J. 55(2), 1753–1763 (2016)

    Article  Google Scholar 

  40. Singh, J., Kumar, D., Swroop, R., Kumar, S.: An efficient computational approach for time-fractional Rosenau-Hyman equation. Neural Comput. Appl. 45, 192–204 (2017)

    Google Scholar 

  41. Srivastava, H.M., Kumar, D., Singh, J.: An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45, 192–204 (2017)

    Article  MathSciNet  Google Scholar 

  42. Yamashita, M., Yabushita, K., Tsuboi, K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A Math. Gen. 40, 8403–8416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: Cátedras CONACyT para jóvenes investigadores 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saad, K.M., Gómez-Aguilar, J.F., Atangana, A., Escobar-Jiménez, R.F. (2019). Model of Coupled System of Fractional Reaction-Diffusion Within a New Fractional Derivative Without Singular Kernel. In: Gómez, J., Torres, L., Escobar, R. (eds) Fractional Derivatives with Mittag-Leffler Kernel. Studies in Systems, Decision and Control, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-11662-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11662-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11661-3

  • Online ISBN: 978-3-030-11662-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics