Skip to main content

To Image the Orientation and Spatial Distribution of Reconstituted Na+,K+-ATPase in Model Lipid Membranes

  • Chapter
  • First Online:
  • 754 Accesses

Abstract

Imaging of sub-optical dynamic features, such as functional membrane nanodomains that are short-lived and proteins that are embedded in such nanodomains, is a challenge with the currently available imaging techniques because such features of interests are very dynamic. Our approach to image dynamic suboptical features is based on a GUV-collapse method followed by high-resolution imaging. We have functionally reconstituted Na+,K+-ATPase, a P-type transmembrane ATPase protein, into free-standing giant unilamellar vesicles (GUVs) which are collapsed to form planar lipid bilayer (PLB) patches within the ∼10 ms time scale. Using our method, we have successfully imaged the PLB patches using atomic force microscopy under physiological conditions to quantify orientation and density of Na+,K+-ATPase in membrane with nanoscopic domains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.W. Albers, Biochemical aspects of active transport. Annu. Rev. Biochem. 36, 727–756 (1967)

    Article  CAS  Google Scholar 

  2. R.L. Post, C. Hegyvary, S. Kume, Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 247, 6530–6540 (1972)

    CAS  Google Scholar 

  3. R. Kanai, H. Ogawa, B. Vilsen, F. Cornelius, C. Toyoshima, Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. Nature 502, 201–206 (2013)

    Article  CAS  Google Scholar 

  4. T. Shinoda, H. Ogawa, F. Cornelius, C. Toyoshima, Crystal structure of the sodium-potassium pump at 2.4 Å resolution. Nature 459, 446–450 (2009)

    Article  CAS  Google Scholar 

  5. H. Ogawa, T. Shinoda, F. Cornelius, C. Toyoshima, Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc. Natl. Acad. Sci. U. S. A. 106(33), 13742–13747 (2009)

    Article  CAS  Google Scholar 

  6. H. Ogawa, F. Cornelius, A. Hirata, C. Toyoshima, Sequential substitution of K(+) bound to Na+,K+-ATPase visualized by X-ray crystallography. Nat. Commun. 6, 8004 (2015)

    Article  CAS  Google Scholar 

  7. J. Skou, The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23, 394–401 (1957)

    Article  CAS  Google Scholar 

  8. F. Cornelius, In Biomimetic Membranes for Sensor and Separation Applications, Biological and Medical Physics, Biomedical Engineering, ed. by C. Hèlix-Nielsen, vol. 6, (Springer, Springer Netherlands, 2012), p. 113–135. DOI: 10.1007/978-94-007-2184-5

    Google Scholar 

  9. J.C. Skou, M. Esmann, The Na,K-ATPase. J. Bioenerg. Biomembr. 24(3), 249–261 (1992)

    CAS  Google Scholar 

  10. J.D. Robinson, Steps to the Na+,K+ pump and Na+,K+-ATPase (1939–1962). Physiology 10(4), 184 (1995)

    Article  CAS  Google Scholar 

  11. F. Cornelius, M. Habeck, R. Kanai, C. Toyoshima, S.J.D. Karlish, General and specific lipid-protein interactions in NaK-ATPase. Biochim. Biophys. Acta 1848, 1729–1743 (2015)

    Article  CAS  Google Scholar 

  12. P.L. Jorgensen, K.O. Håkansson, S.J.D. Karlish, Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu. Rev. Physiol. 65(1), 817–849 (2003)

    Article  CAS  Google Scholar 

  13. J.H. Kaplan, Biochemistry of Na+,K+-ATPase. Annu. Rev. Biochem. 71(1), 511–535 (2002)

    Article  CAS  Google Scholar 

  14. W.J. Rice, H.S. Young, D.W. Martin, J.R. Sachs, D.L. Stokes, Structure of Na+,K+-ATPase at 11-Å resolution: comparison with Ca2+-ATPase in E1 and E2 states. Biophys. J. 80(5), 2187–2197 (2001)

    Article  CAS  Google Scholar 

  15. H.O. Schatzman, Herzglycoside und Kationentransport. Helv. Physiol. Pharmacol. Acta 11, 346 (1953)

    Google Scholar 

  16. D.W. Martin, Structure-function relationships in the Na+,K+-pump, in Seminars in Nephrology, vol. 25, (Elsevier BV Netherlands, 2005), pp. 282–291. DOI: 10.1016/j.semnephrol.2005.03.003

    Google Scholar 

  17. Z. Xie, Molecular mechanisms of Na+,K+-ATPase mediated signal transduction. Ann. N. Y. Acad. Sci. 986, 497–503 (2003)

    Article  CAS  Google Scholar 

  18. D.W. Martin, J.R. Sachs, Preparation of Na+,K+-ATPase with near maximal specific activity and phosphorylation capacity: evidence that the reaction mechanism involves all of the sites. Biochemistry 38(23), 7485–7497 (1999)

    Article  CAS  Google Scholar 

  19. H. Poulsen, H. Khandelia, J.P. Morth, M. Bublitz, O.G. Mouritsen, J. Egebjerg, P. Nissen, Neurological disease mutations compromise a C-terminal ion pathway in the Na+,K+-ATPase. Nature 467(7311), 99–102 (2010)

    Article  CAS  Google Scholar 

  20. J.C. Skou, M. Esmann, Preparation of membrane Na+,K+-ATPase from rectal glands of Squalus acanthias. Methods Enzymol. 156, 43–46 (1988)

    Article  CAS  Google Scholar 

  21. F. Cornelius, Functional reconstitution of the sodium pump kinetics of exchange reactions performed by reconstituted NaK-ATPase. Biochim. Biophys. Acta 1071, 19–66 (1991)

    Article  CAS  Google Scholar 

  22. P. Ottolenghi, The reversible delipidation of a solubilized sodium-plus-potassium ion-dependent adenosine triphosphatase from the salt gland of the spiny dogfish. Biochem. J. 151(1), 61 (1975)

    Article  CAS  Google Scholar 

  23. O.H. Lowry, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    CAS  Google Scholar 

  24. F. Cornelius, J.V. Moller, In Handbook of Non-medical Applications of Liposomes, ed. by D. D. Lasic, Y. Barenholz, vol. 2, (CRC Press, Boca Raton, 1995), pp. 219–243

    Google Scholar 

  25. F. Cornelius, Incorporation of C12E8-solubilized Na+,K+-ATPase into liposomes, determination of sidedness and orientation. Methods Enzymol. 156, 156–167 (1988)

    Article  CAS  Google Scholar 

  26. G.L. Peterson, A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83, 346–356 (1977)

    Article  CAS  Google Scholar 

  27. T. Bhatia, F. Cornelius, J.H. Ipsen, Capturing sub-optical dynamic structures in the lipid bilayer patches formed from free-standing giant unilamellar vesicles. Nat. Protoc. 12, 1563–1575 (2017)

    Article  CAS  Google Scholar 

  28. T. Bhatia, F. Cornelius, O.G. Mouritsen, J.H. Ipsen, Reconstitution of transmembrane protein Na+,K+-ATPase in giant unilamellar vesicles of lipid mixtures involving PSM, DOPC, DPPC and cholesterol at physiological buffer and temperature conditions. Protoc. Exchange. (2016). https://doi.org/10.1038/protex.2016.010

  29. T. Bhatia et al., Spatial distribution and activity of Na+,K+-ATPase in lipid bilayer membranes with phase boundaries. Biochim. Biophys. Acta 1858, 1390–1399 (2016)

    Article  CAS  Google Scholar 

  30. T. Bhatia et al., Preparing giant unilamellar vesicles of complex lipid mixtures on demand: mixing small unilamellar vesicles of compositionally heterogeneous mixtures. Biochim. Biophys. Acta 1848, 3175–3180 (2015)

    Article  CAS  Google Scholar 

  31. T. Bhatia, P. Husen, J.H. Ipsen, L.A. Bagatolli, A.C. Simonsen, Fluid domain patterns in free-standing membranes captured on a solid support. Biochim. Biophys. Acta 1838, 2503–2510 (2014)

    Article  CAS  Google Scholar 

  32. C. Hamai, P.S. Cremer, S.M. Musser, Single giant vesicle rupture events reveal multiple mechanisms of glass-supported bilayer formation. Biophys. J. 92, 1988–1999 (2007)

    Article  CAS  Google Scholar 

  33. D.J. Muller, A. Engel, Atomic force microscopy and spectroscopy of native membrane proteins. Nat. Protoc. 2, 2191–2197 (2007)

    Article  Google Scholar 

  34. F. Jarai-Szabo, Z. Neda, On the size distribution of Poisson Voronoi cells. Physica A 385, 518–526 (2007)

    Article  Google Scholar 

  35. F. Cornelius, Cholesterol dependent interaction of polyunsaturated phospholipids with NaK-ATPase. Biochemistry 47, 1652–1658 (2008)

    Article  CAS  Google Scholar 

  36. S. Safran, Micelles Membranes Microemulsions and Monolayers (Springer, New York, 1994)

    Google Scholar 

  37. J.V. Møller et al., Probing of the membrane topology of sarcoplasmic reticulum Ca2+-ATPase with sequence-specific antibodies. J. Biol. Chem. 272, 29015–29032 (1997)

    Article  Google Scholar 

  38. C. Toyoshima et al., Crystal structures of the calcium pump and sarcolipin in the Mg+2 -bound E1 state. Nature 495, 260–264 (2013)

    Article  CAS  Google Scholar 

  39. J.P. Morth et al., A structural overview of the plasma membrane Na+,K+-ATPase and H+ ATPase ion pumps. Nat. Rev. Mol. Cell Biol. 12, 60–70 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

TB acknowledges Prof. John H. Ipsen, Prof. O.G. Mouritsen, A.C. Simonsen (SDU), P.L. Hansen, L.A. Bagatolli, J. Brewer (SDU), L. Duelund, B. Franchi and H. Kidmose for useful discussions on the work presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tripta Bhatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatia, T., Cornelius, F. (2019). To Image the Orientation and Spatial Distribution of Reconstituted Na+,K+-ATPase in Model Lipid Membranes. In: Kök, F., Arslan Yildiz, A., Inci, F. (eds) Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-030-11596-8_2

Download citation

Publish with us

Policies and ethics