Skip to main content

Measuring the Gravitational Field in General Relativity: From Deviation Equations and the Gravitational Compass to Relativistic Clock Gradiometry

  • Chapter
  • First Online:

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 196))

Abstract

How does one measure the gravitational field? We give explicit answers to this fundamental question and show how all components of the curvature tensor, which represents the gravitational field in Einstein’s theory of General Relativity, can be obtained by means of two different methods. The first method relies on the measuring the accelerations of a suitably prepared set of test bodies relative to the observer. The second method utilizes a set of suitably prepared clocks. The methods discussed here form the basis of relativistic (clock) gradiometry and are of direct operational relevance for applications in geodesy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use “s” to indicate relations which only hold for symmetric connections and denote Riemannian objects by the overbar.

  2. 2.

    The contortion \(K_{y_2 y_1 y_3}\) should not be confused with the Jacobi propagator \(K^x{}_y\).

References

  1. F.A.E. Pirani, On the physical significance of the Riemann tensor. Acta Phys. Pol. 15, 389 (1956)

    ADS  MathSciNet  MATH  Google Scholar 

  2. J.L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960)

    MATH  Google Scholar 

  3. E. Poisson, A. Pound, I. Vega, The motion of point particles in curved spacetime. Living Rev. Relativ. 14(1), 7 (2011)

    Article  ADS  Google Scholar 

  4. T. Levi-Civita, Sur l’écart géodésique. Math. Ann. 97, 291 (1927)

    Article  MathSciNet  Google Scholar 

  5. J.L. Synge, The first and second variations of the length integral in Riemannian space. Proc. Lond. Math. Soc. 25, 247 (1926)

    Article  MathSciNet  Google Scholar 

  6. J.L. Synge, On the geometry of dynamics. Phil. Trans. R. Soc. Lond. A 226, 31 (1927)

    Article  ADS  Google Scholar 

  7. D. Puetzfeld, Y.N. Obukhov, Generalized deviation equation and determination of the curvature in general relativity. Phys. Rev. D 93, 044073 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Szekeres, The gravitational compass. J. Math. Phys. 6, 1387 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Puetzfeld, Y.N. Obukhov, C. Lämmerzahl, Gravitational clock compass in general relativity. Phys. Rev. D 98, 024032 (2018)

    Article  ADS  Google Scholar 

  10. B.S. DeWitt, R.W. Brehme, Radiation damping in a gravitational field. Ann. Phys. (N.Y.) 9, 220 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Puetzfeld, Y.N. Obukhov, Covariant equations of motion for test bodies in gravitational theories with general nonminimal coupling. Phys. Rev. D 87, 044045 (2013)

    Article  ADS  Google Scholar 

  12. D. Puetzfeld, Y.N. Obukhov, Equations of motion in metric-affine gravity: a covariant unified framework. Phys. Rev. D 90, 084034 (2014)

    Article  ADS  Google Scholar 

  13. A.C. Ottewill, B. Wardell, Transport equation approach to calculations of Hadamard Green functions and non-coincident DeWitt coefficients. Phys. Rev. D 84, 104039 (2011)

    Article  ADS  Google Scholar 

  14. D.E. Hodgkinson, A modified theory of geodesic deviation. Gen. Relativ. Gravit. 3, 351 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  15. S.L. Bażański, Kinematics of relative motion of test particles in general relativity. Ann. H. Poin. A 27, 115 (1977)

    MathSciNet  MATH  Google Scholar 

  16. A.N. Aleksandrov, K.A. Piragas, Geodesic structure: I. Relative dynamics of geodesics. Theor. Math. Phys. 38, 48 (1978)

    Article  Google Scholar 

  17. B. Schutz, On generalized equations of geodesic deviation, in Galaxies, Axisymmetric Systems, and Relativity, vol 17, ed. by M.A.H. MacCallum (Cambridge University Press, Cambridge, 1985), p. 237

    Google Scholar 

  18. C. Chicone, B. Mashhoon, The generalized Jacobi equation. Class. Quantum Gravity 19, 4231 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Mullari, R. Tammelo, On the relativistic tidal effects in the second approximation. Class. Quantum Gravity 23, 4047 (2006)

    Article  MathSciNet  Google Scholar 

  20. J. Vines, Geodesic deviation at higher orders via covariant bitensors. Gen. Relativ. Gravit. 47, 59 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Fermi, Sopra i fenomeni che avvengono in vicinanza di una linea oraria. Atti. Accad. Naz. Lincei Cl, Sci. Fis. Mat. Nat. Rend. 31, 21, 51, 101 (1922)

    Google Scholar 

  22. E. Fermi, Collected Papers, vol 1, ed. by E. Amaldi, E. Persico, F. Rasetti, E. Segrè (University of Chicago Press, Chicago, 1962)

    Google Scholar 

  23. O. Veblen, Normal coordinates for the geometry of paths. Proc. Natl. Acad. Sci. (USA) 8, 192 (1922)

    Article  ADS  Google Scholar 

  24. O. Veblen, T.Y. Thomas, The geometry of paths. Trans. Am. Math. Soc. 25, 551 (1923)

    Article  MathSciNet  Google Scholar 

  25. J.L. Synge, A characteristic function in Riemannian space and its application to the solution of geodesic triangles. Proc. Lond. Math. Soc. 32, 241 (1931)

    Article  MathSciNet  Google Scholar 

  26. A.G. Walker, Relative coordinates. Proc. R. Soc. Edinb. 52, 345 (1932)

    Article  Google Scholar 

  27. F.K. Manasse, C.W. Misner, Fermi normal coordinates and some basic concepts in differential geometry. J. Math. Phys. 4, 735 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  28. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  29. W.-T. Ni, On the proper reference frame and local coordinates of an accelerated observer in special relativity. Chin. J. Phys. 15, 51 (1977)

    Google Scholar 

  30. B. Mashhoon, Tidal radiation. Astrophys. J. 216, 591 (1977)

    Article  ADS  Google Scholar 

  31. W.-T. Ni, M. Zimmermann, Inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer. Phys. Rev. D 17, 1473 (1978)

    Article  ADS  Google Scholar 

  32. W.-Q. Li, W.-T. Ni, On an accelerated observer with rotating tetrad in special relativity. Chin. J. Phys. 16, 214 (1978)

    Google Scholar 

  33. W.-T. Ni, Geodesic triangles and expansion of the metrics in normal coordinates. Chin. J. Phys. 16, 223 (1978)

    Google Scholar 

  34. W.-Q. Li, W.-T. Ni, Coupled inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer. J. Math. Phys. 20, 1473 (1979)

    Article  ADS  Google Scholar 

  35. W.-Q. Li, W.-T. Ni, Expansions of the affinity, metric and geodesic equations in Fermi normal coordinates about a geodesic. J. Math. Phys. 20, 1925 (1979)

    Article  ADS  Google Scholar 

  36. N. Ashby, B. Bertotti, Relativistic effects in local inertial frames. Phys. Rev. D 34, 2246 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  37. A.M. Eisele, On the behaviour of an accelerated clock. Helv. Phys. Acta 60, 1024 (1987)

    Google Scholar 

  38. T. Fukushima, The Fermi coordinate system in the post-Newtonian framework. Celest. Mech. 44, 1024 (1988)

    Article  Google Scholar 

  39. O. Semerák, Stationary frames in the Kerr field. Gen. Relativ. Gravit. 25, 1041 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  40. K.-P. Marzlin, Fermi coordinates for weak gravitational fields. Phys. Rev. D 50, 888 (1994)

    Article  ADS  Google Scholar 

  41. D. Bini, A. Geralico, R.T. Jantzen, Kerr metric, static observers and Fermi coordinates. J. Math. Phys. 22, 4729 (2005)

    MathSciNet  MATH  Google Scholar 

  42. C. Chicone, B. Mashhoon, Explicit Fermi coordinates and tidal dynamics in de Sitter and Gödel spacetime. Phys. Rev. D 74, 064019 (2006)

    Article  ADS  Google Scholar 

  43. D. Klein, P. Collas, General transformation formulas for Fermi-Walker coordinates. Class. Quantum Gravity 25, 145019 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  44. D. Klein, P. Collas, Exact Fermi coordinates for a class of space-times. J. Math. Phys. 51, 022501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  45. P. Delva, M.-C. Angonin, Extended Fermi coordinates. Gen. Relativ. Gravit. 44, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  46. S.G. Turyshev, O.L. Minazzoli, V.T. Toth, Accelerating relativistic reference frames in Minkowski space-time. J. Math. Phys. 53, 032501 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  47. F.W. Hehl, W.-T. Ni, Inertial effects of a Dirac particle. Phys. Rev. D 42, 2045 (1990)

    Article  ADS  Google Scholar 

  48. I. Ciufolini, M. Demianski, How to measure the curvature of space-time. Phys. Rev. D 34, 1018 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  49. I. Ciufolini, Generalized geodesic deviation equation. Phys. Rev. D 34, 1014 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  50. R. Rodrigo, V. Dehant, L. Gurvits, M. Kramer, R. Park, P. Wolf, J. Zarnecki (eds.), High Performance Clocks with Special Emphasis on Geodesy and Geophysics and Applications to Other Bodies of the Solar System, vol. 63, Space Sciences Series of ISSI (Springer, Netherlands, 2018)

    Google Scholar 

  51. F.W. Hehl, P. von der Heyde, G.D. Kerlick, J.M. Nester, General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  52. M. Blagojević, F.W. Hehl, Gauge Theories of Gravitation: A Reader with Commentaries (Imperial College Press, London, 2013)

    Book  Google Scholar 

  53. V.N. Ponomarev, A.O. Barvinsky, Y.N. Obukhov, Gauge Approach and Quantization Methods in Gravity Theory (Nauka, Moscow, 2017)

    Book  Google Scholar 

  54. F.W. Hehl, Y.N. Obukhov, D. Puetzfeld, On Poincaré gauge theory of gravity, its equations of motion, and gravity probe B. Phys. Lett. A 377, 1775 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  55. Y.N. Obukhov, D. Puetzfeld, Multipolar test body equations of motion in generalized gravity theories, in Equations of Motion in Relativistic Gravity, vol. 179, Fundamental Theories of Physics, ed. by D. Puetzfeld, et al. (Springer, Cham, 2015), p. 67

    Chapter  Google Scholar 

  56. D. Puetzfeld, Y.N. Obukhov, Deviation equation in Riemann-Cartan spacetime. Phys. Rev. D 97, 104069 (2018)

    Article  ADS  Google Scholar 

  57. A. Trautman, Einstein-Cartan theory, in Encyclopedia of Mathematical Physics, vol. 2, ed. by J.-P. Francoise, G.L. Naber, S.T. Tsou (Elsevier, Oxford, 2006), p. 189

    Chapter  Google Scholar 

  58. Y.N. Obukhov, Poincaré gauge gravity: selected topics. Int. J. Geom. Methods Mod. Phys. 03, 95 (2006)

    Article  Google Scholar 

  59. Y.N. Obukhov, Poincaré gauge gravity: an overview. Int. J. Geom. Methods Mod. Phys. 15, Supp. 1 (2018) 1840005

    Article  ADS  MathSciNet  Google Scholar 

  60. J.L. Synge, Geodesics in non-holonomic geometry. Math. Ann. 99, 738 (1928)

    Article  MathSciNet  Google Scholar 

  61. W.H. Goldthorpe, Spectral geometry and \(SO(4)\) gravity in a Riemann-Cartan spacetime. Nucl. Phys. B 170, 307 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  62. H.T. Nieh, M.L. Yan, Quantized Dirac field in curved Riemann-Cartan background: I. Symmetry properties, Green’s function. Ann. Phys. (N.Y.) 138, 237 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  63. N.H. Barth, Heat kernel expansion coefficient: I. An extension. J. Phys. A Math. Gen. 20, 857 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  64. S. Yajima, Evaluation of the heat kernel in Riemann-Cartan space. Class. Quantum Gravity 13, 2423 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  65. S.S. Manoff, Auto-parallel equation as Euler-Lagrange’s equation in spaces with affine connections and metrics. Gen. Relativ. Gravit. 32, 1559 (2000)

    Article  ADS  Google Scholar 

  66. S.S. Manoff, Deviation equations of Synge and Schild over spaces with affine connections and metrics. Int. J. Mod. Phys. A 16, 1109 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  67. B.Z. Iliev. Deviation equations in spaces with a transport along paths. JINR Commun. E2-94-40, Dubna, 1994 (2003)

    Google Scholar 

  68. R.J. van den Hoogen, Towards a covariant smoothing procedure for gravitational theories. J. Math. Phys. 58, 122501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  69. T.Y. Thomas, The Differential Invariants of Generalized Spaces (Cambridge University Press, Cambridge, 1934)

    MATH  Google Scholar 

  70. J.A. Schouten, Ricci-Calculus. An Introduction to Tensor Analysis and its Geometric Applications, 2nd edn. (Springer, Berlin, 1954)

    MATH  Google Scholar 

  71. I.G. Avramidi, A covariant technique for the calculation of the one-loop effective action. Nucl. Phys. B 355, 712 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  72. I.G. Avramidi, Covariant methods for the calculation of the effective action in quantum field theory and investigation of higher-derivative quantum gravity. Ph.D. thesis, Moscow State University (1986), English version arXiv:hep-th/9510140

  73. A.Z. Petrov, Einstein Spaces (Pergamon, Oxford, 1969)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the grant PU 461/1-1 (D.P.). The work of Y.N.O. was partially supported by PIER (“Partnership for Innovation, Education and Research” between DESY and Universität Hamburg) and by the Russian Foundation for Basic Research (Grant No. 16-02-00844-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Puetzfeld .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A Directory of Symbols

Table 1 Directory of symbols
Table 2 Directory of symbols (continued)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Obukhov, Y.N., Puetzfeld, D. (2019). Measuring the Gravitational Field in General Relativity: From Deviation Equations and the Gravitational Compass to Relativistic Clock Gradiometry. In: Puetzfeld, D., Lämmerzahl, C. (eds) Relativistic Geodesy. Fundamental Theories of Physics, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-030-11500-5_3

Download citation

Publish with us

Policies and ethics