Skip to main content

Therapeutic Drug Monitoring in Inflammatory Bowel Disease: Optimising Therapeutic Effectiveness of Thiopurines

  • Chapter
  • First Online:
  • 622 Accesses

Abstract

Azathioprine (AZA) and 6-mercaptopurine (6-MP) remain important therapeutics in the management of Crohn’s disease (CD) and ulcerative colitis (UC). Despite their clinical effectiveness, thiopurines present clinicians with several challenges including their narrow therapeutic index and risk of adverse reactions. These factors account for high rates of discontinuation, underscoring the importance of optimal dosing strategies geared towards maximising clinical effectiveness and minimising intolerances.

There are a number of methods to optimise therapy including measuring thiopurine-S-methyltransferase (TPMT) genotype or phenotype, manipulating metabolism through the addition of allopurinol in shunters, and splitting the thiopurine dose to reduce adverse effects. Furthermore, 6-MP has been established as a safe and effective alternative to AZA intolerance, while thioguanine presents an alternative in patients intolerant of either AZA or 6-MP.

Understanding their pharmacokinetic profile and acknowledging inter-patient variations also remain important, particularly given thiopurine metabolite levels have been shown to correlate poorly with dose. Despite the lack of high-quality, supportive data, there is sufficient evidence to suggest that targeting therapeutic 6-thioguanine nucleotide (6-TGN) levels in the setting of active disease is worthwhile, particularly given that subtherapeutic levels expose patients to side effects without comparative effectiveness. However, based on current evidence, recommending proactive thiopurine metabolite monitoring and optimisation relative to standard weight-based dosing remains uncertain. Thiopurines have also been shown to be useful when used in combination with antitumour necrosis factor-α (anti-TNF) agents, although optimal dosing and 6-TGN in this context remain to be clearly defined. Metabolite testing also plays an important role in evaluating suboptimal response, poor adherence, and/or identifying the cause of suspected toxicities, all of which provide valuable information to direct clinical decision-making.

This chapter will concentrate on thiopurine optimisation in inflammatory bowel disease (IBD), with a particular focus on aspects of thiopurine metabolite monitoring to guide clinical decision-making.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gisbert JP, Gomollón F. Thiopurine-induced myelotoxicity in patients with inflammatory bowel disease: a review. Am J Gastroenterol. 2008;103:1783.

    Article  Google Scholar 

  2. Ardizzone S, Maconi G, Russo A, et al. Randomised controlled trial of azathioprine and 5-aminosalicylic acid for treatment of steroid dependent ulcerative colitis. Gut. 2006;55:47–53.

    Article  CAS  Google Scholar 

  3. Lopez-Sanroman A, Bermejo F, Carrera E, Garcia-Plaza A. Efficacy and safety of thiopurinic immunomodulators (azathioprine and mercaptopurine) in steroid-dependent ulcerative colitis. Aliment Pharmacol Ther. 2004;20:161–6.

    Article  CAS  Google Scholar 

  4. Lim W-C, Hanauer S. Aminosalicylates for induction of remission or response in Crohn’s disease. Cochrane Database Syst Rev. 2010;12:CD008870.

    Google Scholar 

  5. Colombel JF, Sandborn WJ, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362:1383–95.

    Article  CAS  Google Scholar 

  6. Chevaux JB, Peyrin-Biroulet L, Sparrow MP. Optimizing thiopurine therapy in inflammatory bowel disease. Inflamm Bowel Dis. 2011;17:1428–35.

    Article  Google Scholar 

  7. Cosnes J, Nion-Larmurier I, Beaugerie L, et al. Impact of the increasing use of immunosuppressants in Crohn’s disease on the need for intestinal surgery. Gut. 2005;54:237–41.

    Article  CAS  Google Scholar 

  8. Jharap B, Seinen ML, De Boer N, et al. Thiopurine therapy in inflammatory bowel disease patients: analyses of two 8-year intercept cohorts. Inflamm Bowel Dis. 2010;16:1541–9.

    Article  CAS  Google Scholar 

  9. Yatscoff RW, Aspeslet LJ, Gallant HL. Pharmacodynamic monitoring of immunosuppressive drugs. Clin Chem. 1998;44:428–32.

    CAS  PubMed  Google Scholar 

  10. Elion G. The George Hitchings and Gertrude Elion lecture: the pharmacology of azathioprine. Ann N Y Acad Sci. 1990;685:1239–56.

    Google Scholar 

  11. Aarbakke J, Janka-Schaub G, Elion GB. Thiopurine biology and pharmacology. Trends Pharmacol Sci. 1997;18:3–7.

    Article  CAS  Google Scholar 

  12. Sandborn W. A review of immune modifier therapy for inflammatory bowel disease: azathioprine, 6-mercaptopurine, cyclosporine, and methotrexate. Am J Gastroenterol. 1996;91:423–33.

    CAS  PubMed  Google Scholar 

  13. Moreau AC, Paul S, Del Tedesco E, et al. Association between 6-thioguanine nucleotides levels and clinical remission in inflammatory disease: a meta-analysis. Inflamm Bowel Dis. 2014;20:464–71.

    Article  Google Scholar 

  14. Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet. 1980;32:651.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ansari A, Hassan C, Duley J, et al. Thiopurine methyltransferase activity and the use of azathioprine in inflammatory bowel disease. Aliment Pharmacol Ther. 2002;16:1743–50.

    Article  CAS  Google Scholar 

  16. Chocair PR, Duley JA, Simmonds HA, Cameron JS. The importance of thiopurine methyltransferase activity for the use of azathioprine in transplant recipients. Transplantation. 1992;53:1051–6.

    Article  CAS  Google Scholar 

  17. Soria-Royer C, Legendre C, Mircheva J, et al. Thiopurine-methyl-transferase activity to assess azathioprine myelotoxicity in renal transplant recipients. Lancet. 1993;341:1593–4.

    Article  CAS  Google Scholar 

  18. Dubinsky MC, Yang H, Hassard PV, et al. 6-mp metabolite profiles provide a biochemical explanation for 6-mp resistance in patients with inflammatory bowel disease. Gastroenterology. 2002;122:904–15.

    Article  CAS  Google Scholar 

  19. Coenen MJ, de Jong DJ, van Marrewijk CJ, et al. Identification of patients with variants in tpmt and dose reduction reduces hematologic events during thiopurine treatment of inflammatory bowel disease. Gastroenterology. 2015;149:907–17. e7.

    Article  Google Scholar 

  20. Newman WG, Payne K, Tricker K, et al. A pragmatic randomized controlled trial of thiopurine methyltransferase genotyping prior to azathioprine treatment: the target study. Pharmacogenomics. 2011;12:815–26.

    Article  CAS  Google Scholar 

  21. Sayani FA, Prosser C, Bailey RJ, Jacobs P, Fedorak RN. Thiopurine methyltransferase enzyme activity determination before treatment of inflammatory bowel disease with azathioprine: effect on cost and adverse events. Can J Gastroenterol Hepatol. 2005;19:147–51.

    Google Scholar 

  22. Colombel JF, Ferrari N, Debuysere H, et al. Genotypic analysis of thiopurine s-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology. 2000;118:1025–30.

    Article  CAS  Google Scholar 

  23. Dubinsky MC, Lamothe S, Yang HY, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology. 2000;118:705–13.

    Article  CAS  Google Scholar 

  24. Yang S-K, Hong M, Baek J, et al. A common missense variant in nudt15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet. 2014;46:1017.

    Article  CAS  Google Scholar 

  25. Zabala-Fernández W, Barreiro-de Acosta M, Echarri A, et al. A pharmacogenetics study of tpmt and itpa genes detects a relationship with side effects and clinical response in patients with inflammatory bowel disease receiving azathioprine. J Gastrointestin Liver Dis. 2011;20:247–53.

    PubMed  Google Scholar 

  26. Nielsen O, Vainer B, Rask-Madsen J. The treatment of inflammatory bowel disease with 6-mercaptopurine or azathioprine. Aliment Pharmacol Ther. 2001;15:1699–708.

    Article  CAS  Google Scholar 

  27. Cuffari C, Hunt S, Bayless T. Enhanced bioavailability of azathioprine compared to 6-mercaptopurine therapy in inflammatory bowel disease: correlation with treatment efficacy. Aliment Pharmacol Ther. 2000;14:1009–14.

    Article  CAS  Google Scholar 

  28. Sandborn WJ, Tremaine WJ, Wolf DC, et al. Lack of effect of intravenous administration on time to respond to azathioprine for steroid-treated Crohn’s disease. Gastroenterology. 1999;117:527–35.

    Article  CAS  Google Scholar 

  29. Dubinsky MC, Reyes E, Ofman J, et al. A cost-effectiveness analysis of alternative disease management strategies in patients with Crohn’s disease treated with azathioprine or 6-mercaptopurine. Am J Gastroenterol. 2005;100:2239.

    Article  CAS  Google Scholar 

  30. Cuffari C, Theoret Y, Latour S, Seidman G. 6-mercaptopurine metabolism in Crohn’s disease: correlation with efficacy and toxicity. Gut. 1996;39:401–6.

    Article  CAS  Google Scholar 

  31. Cuffari C, Hunt S, Bayless T. Utilisation of erythrocyte 6-thioguanine metabolite levels to optimise azathioprine therapy in patients with inflammatory bowel disease. Gut. 2001;48:642–6.

    Article  CAS  Google Scholar 

  32. Gupta P, Gokhale R, Kirschner BS. 6-mercaptopurine metabolite levels in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2001;33:450–4.

    Article  CAS  Google Scholar 

  33. Wright S, Sanders D, Lobo A, Lennard L. Clinical significance of azathioprine active metabolite concentrations in inflammatory bowel disease. Gut. 2004;53:1123–8.

    Article  CAS  Google Scholar 

  34. Seidman EG. Clinical use and practical application of tpmt enzyme and 6-mercaptopurine metabolite monitoring in ibd. Rev Gastroenterol Disord. 2003;3:S30–S7.

    PubMed  Google Scholar 

  35. Haines ML, Ajlouni Y, Irving PM, et al. Clinical usefulness of therapeutic drug monitoring of thiopurines in patients with inadequately controlled inflammatory bowel disease. Inflamm Bowel Dis. 2010;17:1301–7.

    Article  Google Scholar 

  36. Gomollon F, Dignass A, Annese V, et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: part 1: diagnosis and medical management. J Crohns Colitis. 2017;11:3–25.

    Article  Google Scholar 

  37. Reinshagen M, Schütz E, Armstrong VW, et al. 6-thioguanine nucleotide–adapted azathioprine therapy does not lead to higher remission rates than standard therapy in chronic active Crohn disease: results from a randomized, controlled, open trial. Clin Chem. 2007;53:1306–14.

    Article  CAS  Google Scholar 

  38. Dassopoulos T, Dubinsky MC, Bentsen JL, et al. Randomised clinical trial: individualised vs weight-based dosing of azathioprine in Crohn’s disease. Aliment Pharmacol Ther. 2014;39:163–75.

    Article  CAS  Google Scholar 

  39. Casteele NV, Herfarth H, Katz J, Falck-Ytter Y, Singh S. American Gastroenterological Association Institute technical review on the role of therapeutic drug monitoring in the management of inflammatory bowel diseases. Gastroenterology. 2017;153(3):835–57.

    Article  Google Scholar 

  40. Roblin X, Boschetti G, Williet N, et al. Azathioprine dose reduction in inflammatory bowel disease patients on combination therapy: an open-label, prospective and randomised clinical trial. Aliment Pharmacol Ther. 2017;46:142–9.

    Article  CAS  Google Scholar 

  41. Osterman MT, Kundu R, Lichtenstein GR, Lewis JD. Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis. Gastroenterology. 2006;130:1047–53.

    Article  CAS  Google Scholar 

  42. Chouchana L, Narjoz C, Beaune P, Loriot MA, Roblin X. The benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther. 2012;35:15–36.

    Article  CAS  Google Scholar 

  43. Bouguen G, Sninsky C, Tang KL, et al. Change in erythrocyte mean corpuscular volume during combination therapy with azathioprine and infliximab is associated with mucosal healing: a post hoc analysis from sonic. Inflamm Bowel Dis. 2015;21:606–14.

    Article  Google Scholar 

  44. Sparrow MP, Hande SA, Friedman S, Cao D, Hanauer SB. Effect of allopurinol on clinical outcomes in inflammatory bowel disease nonresponders to azathioprine or 6-mercaptopurine. Clin Gastroenterol Hepatol. 2007;5:209–14.

    Article  CAS  Google Scholar 

  45. Ansari A, Patel N, Sanderson J, et al. Low-dose azathioprine or mercaptopurine in combination with allopurinol can bypass many adverse drug reactions in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2010;31:640–7.

    Article  CAS  Google Scholar 

  46. Szumlanski CL, Weinshilboum RM. Sulphasalazine inhibition of thiopurine methyltransferase: possible mechanism for interaction with 6-mercaptopurine and azathioprine. Br J Clin Pharmacol. 1995;39:456–9.

    Article  CAS  Google Scholar 

  47. Hande S, Wilson-Rich N, Bousvaros A, et al. 5-aminosalicylate therapy is associated with higher 6-thioguanine levels in adults and children with inflammatory bowel disease in remission on 6-mercaptopurine or azathioprine. Inflamm Bowel Dis. 2006;12:251–7.

    Article  Google Scholar 

  48. De Boer NK, Wong DR, Jharap B, et al. Dose-dependent influence of 5-aminosalicylates on thiopurine metabolism. Am J Gastroenterol. 2007;102:2747.

    Article  Google Scholar 

  49. Andrews J, Travis S, Gibson P, Gasche C. Systematic review: does concurrent therapy with 5-asa and immunomodulators in inflammatory bowel disease improve outcomes? Aliment Pharmacol Ther. 2009;29:459–69.

    Article  CAS  Google Scholar 

  50. Shih D, Nguyen M, Zheng L, et al. Split-dose administration of thiopurine drugs: a novel and effective strategy for managing preferential 6-mmp metabolism. Aliment Pharmacol Ther. 2012;36:449–58.

    Article  CAS  Google Scholar 

  51. Kennedy N, Rhatigan E, Arnott I, et al. A trial of mercaptopurine is a safe strategy in patients with inflammatory bowel disease intolerant to azathioprine: an observational study, systematic review and meta-analysis. Aliment Pharmacol Ther. 2013;38:1255–66.

    Article  CAS  Google Scholar 

  52. Mulder C, van Sorge A. Why measure thiopurine methyltransferase activity? Direct administration of 6-thioguanine might be the alternative for 6-mercaptopurine or azathioprine. Gut. 2001;49:874–5.

    Article  Google Scholar 

  53. Dubinsky MC, Vasiliauskas EA, Singh H, et al. 6-thioguanine can cause serious liver injury in inflammatory bowel disease patients. Gastroenterology. 2003;125:298–303.

    Article  CAS  Google Scholar 

  54. De Boer N, Reinisch W, Teml A, et al. 6-thioguanine treatment in inflammatory bowel disease: a critical appraisal by a european 6-tg working party. Digestion. 2006;73:25–31.

    Article  Google Scholar 

  55. Lémann M, Mary J-Y, Colombel J-F, et al. A randomized, double-blind, controlled withdrawal trial in Crohn’s disease patients in long-term remission on azathioprine. Gastroenterology. 2005;128:1812–8.

    Article  Google Scholar 

  56. O’Donoghue D, Dawson A, Powell-Tuck J, Bown R, Lennard-Jones J. Double-blind withdrawal trial of azathioprine as maintenance treatment for Crohn’s disease. Lancet. 1978;312:955–7.

    Article  Google Scholar 

  57. Wenzl HH, Primas C, Novacek G, et al. Withdrawal of long-term maintenance treatment with azathioprine tends to increase relapse risk in patients with Crohn’s disease. Dig Dis Sci. 2015;60:1414–23.

    Article  CAS  Google Scholar 

  58. Vilien M, Dahlerup J, Munck L, et al. Randomized controlled azathioprine withdrawal after more than two years treatment in Crohn’s disease: increased relapse rate the following year. Aliment Pharmacol Ther. 2004;19:1147–52.

    Article  CAS  Google Scholar 

  59. Hawthorne A, Logan R, Hawkey C, et al. Randomised controlled trial of azathioprine withdrawal in ulcerative colitis. BMJ. 1992;305:20–2.

    Article  CAS  Google Scholar 

  60. Sandborn WJ, Hanauer SB, Rutgeerts P, et al. Adalimumab for maintenance treatment of Crohn’s disease: results of the classic ii trial. Gut. 2007;56:1232–9.

    Article  CAS  Google Scholar 

  61. Colombel JF, Sandborn WJ, Rutgeerts P, et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the charm trial. Gastroenterology. 2007;132:52–65.

    Article  CAS  Google Scholar 

  62. Panaccione R, Ghosh S, Middleton S, et al. Combination therapy with infliximab and azathioprine is superior to monotherapy with either agent in ulcerative colitis. Gastroenterology. 2014;146:392–400. e3.

    Article  CAS  Google Scholar 

  63. Kotlyar DS, Lewis JD, Beaugerie L, et al. Risk of lymphoma in patients with inflammatory bowel disease treated with azathioprine and 6-mercaptopurine: a meta-analysis. Clin Gastroenterol Hepatol. 2015;13:847–58. e4.

    Article  CAS  Google Scholar 

  64. Kirchgesner J, Lemaitre M, Carrat F, et al. Risk of serious and opportunistic infections associated with treatment of inflammatory bowel diseases. Gastroenterology. 2018;155:337–46.e10.

    Article  Google Scholar 

  65. Ben–Horin S, Waterman M, Kopylov U, et al. Addition of an immunomodulator to infliximab therapy eliminates antidrug antibodies in serum and restores clinical response of patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2013;11:444–7.

    Article  Google Scholar 

  66. Strik A, Brink G, Ponsioen C, et al. Suppression of anti-drug antibodies to infliximab or adalimumab with the addition of an immunomodulator in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2017;45:1128–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivasan, A., De Cruz, P., van Langenberg, D. (2019). Therapeutic Drug Monitoring in Inflammatory Bowel Disease: Optimising Therapeutic Effectiveness of Thiopurines. In: Sheng Ding, N., De Cruz, P. (eds) Biomarkers in Inflammatory Bowel Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-11446-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11446-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11445-9

  • Online ISBN: 978-3-030-11446-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics