Skip to main content

Investigating Passengers’ Seating Behavior in Suburban Trains

  • Conference paper
  • First Online:
Traffic and Granular Flow '17 (TGF 2017)

Included in the following conference series:

  • 678 Accesses

Abstract

In pedestrian dynamics, individual-based models serve to simulate the behavior of crowds so that evacuation times and crowd densities can be estimated or the efficiency of public transportation optimized. Often train systems are investigated where seat choice may have a great impact on capacity utilization. Thus it is necessary to reproduce passengers’ behavior inside trains. Yet there is surprisingly little research on the subject. In this contribution, we collect data on seating behavior in Munich’s suburban trains, analyze it, and subsequently introduce a model that matches what we observe. For example, within a compartment, passengers tend to choose the seat group with the smallest number of other passengers. Within a seat group, passengers prefer window seats and forward-facing seats. When there is already another person, passengers tend to choose the seat diagonally across from that person. These and other aspects are incorporated in our model. We demonstrate the applicability of our model and present a qualitative validation with a simulation example. The model’s implementation is part of the free and open-source VADERE simulation framework for pedestrian dynamics and thus available for cross-validation. The model can be used as one component in larger systems for the simulation of public transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alizadeh, R.: A dynamic cellular automaton model for evacuation process with obstacles. Saf. Sci. 49(2), 315–323 (2011). http://dx.doi.org/10.1016/j.ssci.2010.09.006. http://www.sciencedirect.com/science/article/pii/S0925753510002262

    Article  Google Scholar 

  2. Cis, P.: Auslastungsgrad von Eisenbahnwagen in Abhängigkeit von individuellem Fahrgastverhalten. Diplomarbeit, Technische Universität Wien (2009). http://katalog.ub.tuwien.ac.at/AC07806180

    Google Scholar 

  3. Daamen, W., Duives, D.C., Hoogendoorn, S.P. (eds.): The Conference in Pedestrian and Evacuation Dynamics 2014 (PED 2014). In: Transportation Research Procedia, vol. 2, pp. 1–818. Elsevier, Delft (2014). www.sciencedirect.com/science/journal/23521465/2/

  4. Dietrich, F., Köster, G.: Gradient navigation model for pedestrian dynamics. Phys. Rev. E 89(6), 062801 (2014). http://dx.doi.org/10.1103/PhysRevE.89.062801

  5. Ezaki, T., Ohtsuka, K., Chraibi, M., Boltes, M., Yanagisawa, D., Seyfried, A., Schadschneider, A., Nishinari, K.: Inflow process of pedestrians to a confined space (2016). Preprint. arXiv:1609.07884

    Google Scholar 

  6. Gao, Z., Qu, Y., Li, X., Long, J., Huang, H.J.: Simulating the dynamic escape process in large public places. Oper. Res. 62(6), 1344–1357 (2014). http://dx.doi.org/10.1287/opre.2014.1312

    Article  MathSciNet  Google Scholar 

  7. Hall, E.T.: The Hidden Dimension. Doubleday, New York (1966)

    Google Scholar 

  8. Jaehn, F., Neumann, S.: Airplane boarding. Eur. J. Oper. Res. 244(2), 339–359 (2015). http://dx.doi.org/10.1016/j.ejor.2014.12.008

    Article  MathSciNet  Google Scholar 

  9. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A Stat. Mech. Appl. 312(1), 260–276 (2002)

    Article  Google Scholar 

  10. Köster, G., Zönnchen, B.: Queuing at bottlenecks using a dynamic floor field for navigation. In: The Conference in Pedestrian and Evacuation Dynamics 2014, Transportation Research Procedia, pp. 344–352. Delft (2014). http://dx.doi.org/10.1016/j.trpro.2014.09.029

  11. Köster, G., Lehmberg, D., Dietrich, F.: Is slowing down enough to model movement on stairs? In: Knoop, V.L., Daamen, W. (eds.) Traffic and Granular Flow ’15, 27–30 October 2015, pp. 35–42. Springer, Nootdorp (2016)

    Google Scholar 

  12. Liu, X., Song, W., Fu, L., Fang, Z.: Experimental study of pedestrian inflow in a room with a separate entrance and exit. Phys. A Stat. Mech. Appl. 442, 224–238 (2016). http://dx.doi.org/10.1016/j.physa.2015.09.026

    Article  Google Scholar 

  13. Liu, X., Song, W., Fu, L., Lv, W., Fang, Z.: Typical features of pedestrian spatial distribution in the inflow process. Phys. Lett. A 380(17), 1526–1534 (2016). http://dx.doi.org/10.1016/j.physleta.2016.02.028. http://www.sciencedirect.com/science/article/pii/S0375960116001651

    Article  Google Scholar 

  14. Panzera, N.: Die Haltezeit bei hochrangigen, innerstädtischen Verkehren–Einflussfaktoren und Optimierungspotenziale. Diplomarbeit, Fachhochschule St. Pölten GmbH (2014)

    Google Scholar 

  15. Pelechano, N., Badler, N.I.: Modeling crowd and trained leader behavior during building evacuation. Departmental Papers (CIS), p. 272 (2006)

    Google Scholar 

  16. Plank, V.: Dimensionierung von Gepäckablagen in Reisezügen. Diplomarbeit, Technische Universität Wien (2008). http://katalog.ub.tuwien.ac.at/AC05039323

    Google Scholar 

  17. Qiang, S.J., Jia, B., Xie, D.F., Gao, Z.Y.: Reducing airplane boarding time by accounting for passengers’ individual properties: a simulation based on cellular automaton. J. Air Transp. Manag. 40, 42–47 (2014). http://dx.doi.org/10.1016/j.jairtraman.2014.05.007

    Article  Google Scholar 

  18. Rüger, B., Loibl, C.: Präferenzen bei der sitzplatzwahl in fernreisezügen. Eisenbahntechnische Rundschau (ETR) 59(11), 774–777 (2010). http://www.eurailpress.de/etr

    Google Scholar 

  19. Rüger, B., Ostermann, N.: Der Innenraum von Reisezugwagen–Gratwanderung zwischen sinn und effizienz. Eisenbahntechnische Rundschau (ETR) (3), 38–44 (2015). http://www.eurailpress.de/etr

    Google Scholar 

  20. Schöttl, J.: Modelling passengers’ seating behavior for simulations of pedestrian dynamics. Master’s Thesis, Munich University of Applied Sciences (2016)

    Google Scholar 

  21. Seitz, M.J.: Simulating pedestrian dynamics: Towards natural locomotion and psychological decision making. Ph.D. Thesis, Technische Universität München, Munich (2016). https://mediatum.ub.tum.de/?id=1293050

  22. Seitz, M.J., Bode, N.W.F., Köster, G.: How cognitive heuristics can explain social interactions in spatial movement. J. R. Soc. Interface 13(121), 20160439 (2016). http://dx.doi.org/10.1098/rsif.2016.0439

    Article  Google Scholar 

  23. Seitz, M.J., Seer, S., Klettner, S., Köster, G., Handel, O.: How do we wait? Fundamentals, characteristics, and modeling implications. In: Knoop, V.L. Daamen, W. (eds.) Traffic and Granular Flow ’15, 27–30 October 2015, pp. 217–224. Springer, Nootdorp (2016). http://dx.doi.org/10.1007/978-3-319-33482-0

    Chapter  Google Scholar 

  24. von Sivers, I., Köster, G.: Dynamic stride length adaptation according to utility and personal space. Transp. Res. B Methodol. 74, 104–117 (2015). http://dx.doi.org/10.1016/j.trb.2015.01.009

    Article  Google Scholar 

  25. Steiner, A., Phillipp, M.: Speeding up the airplane boarding process by using pre-boarding areas. In: Swiss Transport Research Conference. Ascona (2009)

    Google Scholar 

  26. Trinkoff, A.M.: Seating patterns on the Washington, DC Metro Rail System. Am. J. Public Health 75(6), 657–658 (1985). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1646210/

    Article  Google Scholar 

  27. Tuna, D.: Fahrgastwechselzeit im Personenfernverkehr. Master’s Thesis, Technische Universität Wien (2008). http://katalog.ub.tuwien.ac.at/AC05036489

    Google Scholar 

  28. VADERE-Team: VADERE simulation framework (2016). www.vadere.org

  29. Wardman, M., Murphy, P.: Passengers’ valuations of train seating layout, position and occupancy. Transp. Res. A Policy Pract. 74, 222–238 (2015). http://www.sciencedirect.com/science/article/pii/S0965856415000154

    Article  Google Scholar 

  30. Xiao, Y., Gao, Z., Qu, Y., Li, X.: A pedestrian flow model considering the impact of local density: Voronoi diagram based heuristics approach. Transp. Res. C Emerg. Technol. 68, 566–580 (2016). http://dx.doi.org/10.1016/j.trc.2016.05.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerta Köster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schöttl, J., Seitz, M.J., Köster, G. (2019). Investigating Passengers’ Seating Behavior in Suburban Trains. In: Hamdar, S. (eds) Traffic and Granular Flow '17. TGF 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-11440-4_44

Download citation

Publish with us

Policies and ethics