Skip to main content

Prediction of Pedestrian Speed with Artificial Neural Networks

  • Conference paper
  • First Online:

Abstract

Pedestrian behaviours tend to depend on the type of facility. Accurate predictions of pedestrian movement in complex geometries (including corridor, bottleneck or intersection) are difficult to achieve for models with few parameters. Artificial neural networks have multiple parameters and are able to identify various types of patterns. They could be a suitable alternative for forecasts. We aim in this paper to present first steps testing this approach. We compare estimations of pedestrian speed with a classical model and a neural network for combinations of corridor and bottleneck experiments. The results show that the neural network is able to differentiate the two geometries and to improve the estimation of pedestrian speeds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: IEEE ICCV Conference, pp. 961–971 (2016)

    Google Scholar 

  2. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035–1042 (1995)

    Article  Google Scholar 

  3. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82(4), 046111 (2010)

    Article  Google Scholar 

  4. Chraibi, M., Ezaki, T., Tordeux, A., Nishinari, K., Schadschneider, A., Seyfried, A.: Jamming transitions in force-based models for pedestrian dynamics. Phys. Rev. E 92, 042809 (2015)

    Article  Google Scholar 

  5. Daamen, W.: Modelling passenger flows in public transport facilities. Dissertation, TU Delft (2004)

    Google Scholar 

  6. Das, P., Parida, M., Katiyar, V.K.: Analysis of interrelationship between pedestrian flow parameters using artificial neural network. J. Mod. Transport. 23(4), 298–309 (2015)

    Article  Google Scholar 

  7. Forschungszentrum Jülich: Dataset of experiments with pedestrians. http://ped.fz-juelich.de/database

  8. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: IEEE ICCV Conference, pp. 4346–4354 (2015)

    Google Scholar 

  9. Fritsch, S., Guenther, F., Suling, M.: neuralnet: training of neural networks. http://CRAN.R-project.org/package=neuralnet (2012)

  10. Guo, R., Wong, S., Huang, H., Zhang, P., Lam, W.: A microscopic pedestrian-simulation model and its application to intersecting flows. Physica A 389(3), 515–526 (2010)

    Article  Google Scholar 

  11. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  12. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transport. Sci. 39(1), 1–24 (2005)

    Article  Google Scholar 

  13. Jackel, L., Hackett, D., Krotkov, E., Perschbacher, M., Pippine, J., Sullivan, C.: How DARPA structures its robotics programs to improve locomotion and navigation. Commun. ACM 50(11), 55–59 (2007)

    Article  Google Scholar 

  14. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI’95 Conference, pp. 1137–1143. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  15. Lv, W., Song, W.G., Ma, J., Fang, Z.M.: A two-dimensional optimal velocity model for unidirectional pedestrian flow based on pedestrian’s visual hindrance field. IEEE Trans. Intell. Transp. Syst. 14(4), 1753–1763 (2013)

    Article  Google Scholar 

  16. Ma, Y., Lee, E.W.M., Yuen, R.K.K.: An artificial intelligence-based approach for simulating pedestrian movement. IEEE Trans. Intell. Transp. Syst. 17(11), 3159–3170 (2016)

    Article  Google Scholar 

  17. Mooney, C., Duval, R.: Bootstrapping: A Nonparametric Approach to Statistical Inference. 94–95. Sage Publications, Thousand Oaks (1993)

    Google Scholar 

  18. Moussaïd, M., Guillot, E., Moreau, M., Fehrenbach, J., Chabiron, O., Lemercier, S., Pettré, J., Appert-Rolland, C., Degond, P., Theraulaz, G.: Traffic instabilities in self-organized pedestrian crowds. PLOS Comput. Biol. 8(3), 1–10 (2012)

    Article  Google Scholar 

  19. Nakayama, A., Hasebe, K., Sugiyama, Y.: Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model. Phys. Rev. E 71, 036121 (2005)

    Article  Google Scholar 

  20. Parisi, D., Patterson, G.: Influence of bottleneck lengths and position on simulated pedestrian egress. Pap. Phys. 9, 090001 (2017)

    Article  Google Scholar 

  21. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2014). http://www.R-project.org/

  22. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  23. Sadati, N., Taheri, J.: Solving robot motion planning problem using Hopfield neural network in a fuzzified environment. In: IEEE FS Conference, vol. 2, pp. 1144–1149 (2002)

    Google Scholar 

  24. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Encyclopedia of Complexity and Systems Science, pp. 3142–3176. Springer, New York (2009)

    Chapter  Google Scholar 

  25. Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited. J. Stat. Mech. Theory Exp. 2005(10), P10002 (2005)

    Article  Google Scholar 

  26. Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transport. Sci. 43(3), 395–406 (2009)

    Article  Google Scholar 

  27. Tordeux, A., Chraibi, M., Seyfried, A., Schadschneider, A.: Data from: Prediction of pedestrian speed with artificial neural networks (2017). https://doi.org/10.5281/zenodo.1054017

  28. Treiber, M., Kesting, A.: Traffic Flow Dynamics. Springer, Berlin (2013)

    Book  Google Scholar 

  29. Weidmann, U.: Transporttechnik der Fußgänger. Technical Report, Schriftenreihe des IVT Nr. 90 (ETH Zürich) (1994)

    Google Scholar 

  30. Zhang, J., Seyfried, A.: Experimental studies of pedestrian flows under different boundary conditions. In: ITSC IEEE Conference, pp. 542–547 (2014)

    Google Scholar 

Download references

Acknowledgements

Financial supports by the German Science Foundation (DFG) under grants SCHA 636/9-1 and SE 1789/4-1 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Tordeux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tordeux, A., Chraibi, M., Seyfried, A., Schadschneider, A. (2019). Prediction of Pedestrian Speed with Artificial Neural Networks. In: Hamdar, S. (eds) Traffic and Granular Flow '17. TGF 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-11440-4_36

Download citation

Publish with us

Policies and ethics