Skip to main content

Dye-Sensitized Cu-Doped TiO2 Solar Cells with a Double Flat Band

  • Conference paper
  • First Online:
Book cover Innovations in Smart Cities Applications Edition 2 (SCA 2018)

Abstract

This study reported the successful synthesis of TiO2 nanoparticles doped with Cu as photoanaodes in dye-sensitized solar cells (DSSCs). The nanoparticles were synthetized by low temperature hydrolysis and annealed at 500 °C. The obtained samples were characterized using, X-ray diffraction XRD, Raman spectroscopy. UV-Vis spectroscopy was used to determine the band gap energy values of the as-prepared samples, which Cu-doped TiO2 nanoparticles showed dramatically decrease in band gap energy from 2.9 eV for undoped TiO2 to 1.35 eV in Cu-doped TiO2 nanoparticles. Significant improvement in photovoltaic devices leads to an increase in short circuit current density (Jsc) and in the efficiency of the cell made with Cu-TiO2 increased. This improvement can be explained by the flat band values; which the sample with Cu presented two flat band voltage values, that indicated the creation of the new sublevels in the valance band maximum with a narrowing in the band gap of TiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrade, L., Ribeiro, H.A., Mendes, A.: Dye-sensitized solar cells: an overview. Encycl. Inorg. Bioinorg. Chem. 1–20 (2011)

    Google Scholar 

  2. EPA, Inventory of U.S. greenhouse gas emissions and sinks: 1990–1998,’ EPA 236-R-00-001, U.S. Environmental Protection Agency (2000)

    Google Scholar 

  3. Gong, J., Liang, J., Sumathy, K.: Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew. Sustain. Energ. Rev. 16(8), 5848–5860 (2012)

    Article  Google Scholar 

  4. O’Regan, B., Graẗzel, M.: Nature. 353, 737 (1991)

    Article  Google Scholar 

  5. Hagfeldt, A., Gratzel, M.: Chem. Rev. 95, 49 (1995)

    Article  Google Scholar 

  6. Yu, H., Zhang, S.Q., Zhao, H.J., Xue, B., Liu, P., Will, G.: High-performance TiO2 photoanode with an efficient electron transport network for dye-sensitized solar cells. J. Phys. Chem. C. 113(36), 16277–16282 (2009)

    Article  Google Scholar 

  7. Li, F.R., Wang, G.C., Jiao, Y.: Efficiency enhancement of ZnO-based dye-sensitized solar cell by hollowTiO2 nanofibers. J. Alloy. Compd. 611(5), 19–23 (2014)

    Article  Google Scholar 

  8. Wang, H.K., Rogach, A.L.: Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem. Mater. 26(1), 123–133 (2014)

    Article  Google Scholar 

  9. Quintana, M., Edvinsson, T., Hagfeldt, A., Boschloo, G.: Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J. Phys. Chem. C. 111(2), 1035–1041 (2007)

    Article  Google Scholar 

  10. Ko, K.H., Lee, Y.C., Jung, Y.J.: J. Colloid. Interf. Sci. 283, 482–487 (2005)

    Google Scholar 

  11. Wang, S., Bai, L.N., Sun, H.M., Jiang, Q., Lian, J.S.: Powder Technol. 244, 9–15 (2013)

    Google Scholar 

  12. Cheng, P., Deng, C., Dai, X., Li, B., Liu, D., Xu, J.: Enhanced energy conversion efficiency of TiO2 electrode modified with WO3 in dye-sensitized solar cells. Photochem. Photobiol. A Chem. 195(1), 144–150 (2008)

    Article  Google Scholar 

  13. Cheng, G., Akhtar, M.S., Yang, O.B., Stadler, F.J.: Novel preparation of anatase TiO2@Reduced graphene oxide hybrids for high-performance dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5(14), 6635–6642 (2013)

    Article  Google Scholar 

  14. Chae, J., Kim, D.Y., Kim, S., Kang, M.: Photovoltaic efficiency on dye-sensitized solar cells (DSSC) assembled using Ga-incorporated TiO2 materials. J. Ind. Eng. Chem. 16(6), 906 (2010)

    Article  Google Scholar 

  15. Navas, J., Fernandez-Lorenzo, C., Aguilar, T., Alcantara, R., Martın-Calleja, J.: Improving open- circuit voltage in DSSCs using Cu-doped TiO2 as a semiconductor. Phys. Status Solidi. 2, 378–385 (2012). https://doi.org/10.1002/pssa.201127336

    Article  Google Scholar 

  16. Lü, X., Mou, X., Wu, J., Zhang, D., Zhang, L., Huang, F., Xu, F., Huang, S.: Adv. Funct. Mater. 20, 509 (2010)

    Article  Google Scholar 

  17. Navas, J., Fernández-Lorenzo, C., Aguilar, T., Alcántara, R., Martín-Calleja, J.: Phys. Status Solidi. A. 209, 378 (2012)

    Google Scholar 

  18. Navas, J., Aguilar, T., Fernández-Lorenzo, C., Alcántara, R., De los Santos D.M., Sánchez-Coronilla, A., Zorrilla, D., Sánchez-Márquez, J.,Martín-Calleja, J.: Cu(II)-doped TiO2 nanoparticles as photoelectrode in dye-sensitized solar cells: improvement of open-circuit voltage and a light scattering effect. Sci. Adv. Mater. 6, 473–82 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Chahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chahid, S., de los Santos, D.M., Alcántara, R. (2019). Dye-Sensitized Cu-Doped TiO2 Solar Cells with a Double Flat Band. In: Ben Ahmed, M., Boudhir, A., Younes, A. (eds) Innovations in Smart Cities Applications Edition 2. SCA 2018. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-030-11196-0_76

Download citation

Publish with us

Policies and ethics