Skip to main content

Transformations into State-Affine Normal Forms

  • Chapter
  • First Online:
  • 1009 Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 479))

Abstract

In this chapter, sufficient conditions on a nonlinear system are given to ensure the existence of a transformation into one of the state-affine normal forms. This includes the linearization by output injection and the nonlinear Luenberger design. The former consists in transforming the system into linear dynamics (possibly depending on the input/output), and such that the output is a linear function of the new state. On the other hand, the latter aims at transforming the system into linear dynamics with a stationary Hurwitz linear part but where the output can be any nonlinear function of the new state. In particular, it is shown that under a rather weak backward distinguishability property, any nonlinear system can be transformed into a Hurwitz linear form in an injective way, but through a time-varying transformation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(T:\mathbb {R}^{d_x}\rightarrow \mathbb {R}^{d_\xi }\) is an immersion if the rank of \(\frac{\partial T}{\partial x}\) is \({d_x}\). Contrary to a diffeomorphism, this allows to take \({d_\xi }\ge {d_x}\).

  2. 2.

    In [19], the transformation is called an immersion, but as defined in [19, Definition 2.2], and not in the usual differential geometry sense as defined in this book (see previous footnote).

  3. 3.

    See Definition 1.2.

  4. 4.

    Dynamics with u equal to a constant.

  5. 5.

    \(\xi =T \, x\) follows the dynamics (6.3) if and only if (6.4).

  6. 6.

    Any solution exiting \(\mathscr {X}\) in finite time must cross the boundary of \(\mathscr {X}\). See [2, Definition 1].

  7. 7.

    Separating the real/imaginary parts, the observer is thus of dimension \(2({d_x}+1){d_y}\) on \(\mathbb {R}\). See Remark 6.1.

  8. 8.

    This notion is similar to the distinguishability defined in Definition 1.2 but in negative time and with the constraint that \(\overline{t}\) occurs when both solutions are still in \(\mathscr {S}\).

  9. 9.

    See Definition 5.2 in the autonomous case.

  10. 10.

    Some texts of Sect. 6.2.2 are reproduced from [5] with permission from IEEE.

  11. 11.

    We could have considered a more general Hurwitz form \(\dot{\xi } = A \, \xi + B(y)\) with B any nonlinear function, but taking B linear is sufficient to obtain satisfactory results.

  12. 12.

    The function T depends on u in \(\mathscr {U}\), and we should write \(T_u\) as in Theorem 1.1. But we drop this too heavy notation in this chapter to ease the comprehension. What is important is that the target Hurwitz form, namely \({d_\xi }\), A, and B, is the same for all u in \(\mathscr {U}\).

  13. 13.

    This property is named completeness within \(\mathscr {X}'\) in [2].

  14. 14.

    \(H(\cdot ,\overline{\nu }_m)\) is injective on \(\mathscr {S}\), and \(\frac{\partial H}{\partial x}(x,\overline{\nu }_m)\) is full-rank for any x in \(\mathscr {S}\).

  15. 15.

    This set depends on u, and unfortunately, there is no guarantee that \(\displaystyle \bigcup _{u\in \mathscr {U}}\mathscr {R}_u\) is also of zero Lebesgue measure.

  16. 16.

    Uniformly instantaneously observable, see Definition 1.2.

  17. 17.

    The conditions given in [1] correspond to those obtained from Theorem 6.4. A weaker condition is given by Theorem 6.5.

  18. 18.

    In the case where \(A(\theta )\) is in companion form, an explicit inversion algorithm is available in [1].

  19. 19.

    \(\eta = \varPhi \omega \left( \begin{array}{c} -\sin \theta \\ \cos \theta \end{array}\right) \), with \(\theta \) the electrical angle, and \(\omega =\dot{\theta }\).

  20. 20.

    P is symmetric so it is sufficient to compute \(\frac{{d_\xi }({d_\xi }+1)}{2}\) components.

References

  1. Afri, C., Andrieu, V., Bako, L., Dufour, P.: State and parameter estimation: a nonlinear Luenberger approach (2015). arXiv preprint arXiv:1511.07687

  2. Andrieu, V., Praly, L.: On the existence of a Kazantzis-Kravaris/Luenberger observer. SIAM J. Control Optim. 45(2), 432–456 (2006)

    Article  MathSciNet  Google Scholar 

  3. Back, J., Seo, J.: Immersion of non-linear systems into linear systems up to output injection: characteristic equation approach. Int. J. Control 77(8), 723–734 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bernard, P.: Luenberger observers for nonlinear controlled systems. In: IEEE Conference on Decision and Control (2017)

    Google Scholar 

  5. Bernard, P., Andrieu, V.: Luenberger observers for non autonomous nonlinear systems. IEEE Trans. Autom. Control 64(1), 270–281 (2019)

    Article  Google Scholar 

  6. Besançon, G., Bornard, G.: On characterizing a class of observer forms for nonlinear systems. In: European Control Conference (1997)

    Google Scholar 

  7. Bestle, D., Zeitz, M.: Canonical form observer design for nonlinear time variable systems. Int. J. Control. 38, 419–431 (1983)

    Article  Google Scholar 

  8. Bossane, D., Rakotopara, D., Gauthier, J.P.: Local and global immersion into linear systems up to output injection. In: IEEE Conference on Decision and Control, pp. 2000–2004 (1989)

    Google Scholar 

  9. Engel, R.: Exponential observers for nonlinear systems with inputs. Universität of Kassel, Department of Electrical Engineering, Technical report (2005). https://doi.org/10.13140/RG.2.2.34476.05764

  10. Engel, R.: Nonlinear observers for Lipschitz continuous systems with inputs. Int. J. Control 80(4), 495–508 (2007)

    Article  MathSciNet  Google Scholar 

  11. Fliess, M.: Finite-dimensional observation-spaces for non-linear systems. In: Hinrichsen, D., Isidori, A. (eds.) Feedback Control of Linear and Nonlinear Systems. Lecture Notes in Control and Information Sciences, vol. 39, pp. 73–77. Springer, Berlin (1982)

    Chapter  Google Scholar 

  12. Fliess, M., Kupka, I.: A finiteness criterion for nonlinear input-output differential systems. SIAM J. Control. Optim. 21(5), 721–728 (1983)

    Article  MathSciNet  Google Scholar 

  13. Glumineau, A., Moog, C.H., Plestan, F.: New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Autom. Control 41(4), 598–603 (1996)

    Article  MathSciNet  Google Scholar 

  14. Guay, M.: Observer linearization by output-dependent time-scale transformations. IEEE Trans. Autom. Control 47(10), 1730–1735 (2002)

    Article  MathSciNet  Google Scholar 

  15. Hamami, Y.: Observateur de Kazantzis-Kravaris/Luenberger dans le cas d’un système instationnaire. Technical report, MINES ParisTech (2008)

    Google Scholar 

  16. Hammouri, H., Celle, F.: Some results about nonlinear systems equivalence for the observer synthesis. In: Trends in Systems Theory. New Trends in Systems Theory, vol. 7, pp. 332–339. Birkhäuser (1991)

    Google Scholar 

  17. Hammouri, H., Kinnaert, M.: A new procedure for time-varying linearization up to output injection. Syst. Control Lett. 28, 151–157 (1996)

    Article  MathSciNet  Google Scholar 

  18. Henwood, N., Malaizé, J., Praly, L.: A robust nonlinear Luenberger observer for the sensorless control of SM-PMSM: rotor position and magnets flux estimation. In: IECON Conference on IEEE Industrial Electronics Society (2012)

    Google Scholar 

  19. Jouan, P.: Immersion of nonlinear systems into linear systems modulo output injection. SIAM J. Control Optim. 41(6), 1756–1778 (2003)

    Article  MathSciNet  Google Scholar 

  20. Kazantzis, N., Kravaris, C.: Nonlinear observer design using Lyapunov’s auxiliary theorem. Syst. Control Lett. 34, 241–247 (1998)

    Article  MathSciNet  Google Scholar 

  21. Keller, H.: Nonlinear observer by transformation into a generalized observer canonical form. Int. J. Control 46(6), 1915–1930 (1987)

    Article  MathSciNet  Google Scholar 

  22. Kreisselmeier, G., Engel, R.: Nonlinear observers for autonomous lipshitz continuous systems. IEEE Trans. Autom. Control 48(3), 451–464 (2003)

    Article  Google Scholar 

  23. Krener, A., Isidori, A.: Linearization by output injection and nonlinear observers. Syst. Control Lett. 3, 47–52 (1983)

    Article  MathSciNet  Google Scholar 

  24. Krener, A., Xiao, M.: Nonlinear observer design in the Siegel domain. SIAM J. Control Optim. 41(3), 932–953 (2003)

    Article  MathSciNet  Google Scholar 

  25. Krener, A., Xiao, M.: Nonlinear observer design for smooth systems. In: Perruguetti, W., Barbot., J.-P. (eds.) Chaos in Automatic Control, pp. 411–422. Taylor and Francis, Routledge (2006)

    Google Scholar 

  26. Krener, A.J., Respondek, W.: Nonlinear observers with linearizable dynamics. SIAM J. Control Optim. 23(2), 197–216 (1985)

    Article  MathSciNet  Google Scholar 

  27. Luenberger, D.: Observing the state of a linear system. IEEE Trans. Mil. Electron. 8, 74–80 (1964)

    Article  Google Scholar 

  28. Plestan, F., Glumineau, A.: Linearization by generalized input-output injection. Syst. Control Lett. 31, 115–128 (1997)

    Article  MathSciNet  Google Scholar 

  29. Respondek, W., Pogromski, A., Nijmeijer, H.: Time scaling for observer design with linearizable error dynamics. Automatica 40, 277–285 (2004)

    Article  MathSciNet  Google Scholar 

  30. Rotella, F., Zambettakis, I.: On functional observers for linear time-varying systems. IEEE Trans. Autom. Control 58(5), 1354–1360 (2013)

    Article  Google Scholar 

  31. Shoshitaishvili, A.: On control branching systems with degenerate linearization. In: IFAC Symposium on Nonlinear Control Systems, pp. 495–500 (1992)

    Google Scholar 

  32. Trumpf, J.: Observers for linear time-varying systems. Linear Algebr. Appl. 425, 303–312 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Bernard .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernard, P. (2019). Transformations into State-Affine Normal Forms. In: Observer Design for Nonlinear Systems. Lecture Notes in Control and Information Sciences, vol 479. Springer, Cham. https://doi.org/10.1007/978-3-030-11146-5_6

Download citation

Publish with us

Policies and ethics