Skip to main content

Communication Engineering Meets Medical Science: The Advanced Targeted Nanomedical Solution

  • Chapter
  • First Online:
Advanced Targeted Nanomedicine

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

With the rise in global population, the increase in the number of medically challenging diseases and the low number (as well as uneven distribution) of medical personnel, there is the need for a new approach to global healthcare delivery. In particular, the lack of clear-cut, permanent cures for cancer, Alzheimer’s disease, human immunodeficiency virus (HIV), diabetes, cardiovascular diseases (such as severe coronary artery disease) and Ebola, as well as the projected increase in the proportion of the population at risk of some of these diseases (Jemal et al. in J Nat Cancer Inst 100, 2017 [1], Association in Alzheimer’s Dement 14:367–429, 2018 [2]) means that everyone has something to worry about.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Ward EM et al (2017) Annual report to the nation on the status of cancer, 1975–2014, featuring survival. J Nat Cancer Inst 109

    Google Scholar 

  2. Association AS (2018) Alzheimer’s disease facts and figures. Alzheimer’s Dement 14:367–429

    Article  Google Scholar 

  3. Feynman RP (1959) There’s plenty of room at the bottom. Miniaturization, 282–296

    Google Scholar 

  4. Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217

    Article  CAS  Google Scholar 

  5. Chude-Okonkwo UA, Malekian R, Maharaj BT, Vasilakos AV (2017) Molecular communication and nanonetwork for targeted drug delivery: a survey. IEEE Commun Surv Tutor 19(4):3046–3096

    Article  Google Scholar 

  6. Debbage P (2009) Targeted drugs and nanomedicine: present and future. Current Pharm Des 15:153–172

    Article  CAS  Google Scholar 

  7. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  CAS  Google Scholar 

  8. Muthu MS, Singh S (2009) Targeted nanomedicines: effective treatment modalities for cancer. AIDS and brain disorders. Futur Med 4(1):105–118

    CAS  Google Scholar 

  9. Gregori M, Masserini M, Mancini S (2015) Nanomedicine for the treatment of Alzheimer’s disease. Nanomedicine 10:1203–1218

    Article  CAS  Google Scholar 

  10. Krol S, Ellis-Behnke R, Marchetti P (2012) Nanomedicine for treatment of diabetes in an aging population: state-of-the-art and future developments. Nanomed Nanotechnol Biol Med 8:S69–S76

    Article  CAS  Google Scholar 

  11. Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M (2010) Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci 31:199–205

    Article  CAS  Google Scholar 

  12. Bozic I, Allen B, Nowak MA (2012) Dynamics of targeted cancer therapy. Tr Mol Med 18:311–316

    Article  CAS  Google Scholar 

  13. Bar-Zeev M, Livney YD, Assaraf YG (2017) Targeted nanomedicine for cancer therapeutics: towards precision medicine overcoming drug resistance. Drug Res Updat 31:15–30

    Article  Google Scholar 

  14. Peng X, Xing P, Li X, Qian Y, Song F, Bai Z, Han G, Lei H (2016) Towards personalized intervention for Alzheimer’s disease. Gen Proteomics Bioinf 14:289–297

    Article  Google Scholar 

  15. Bazigou E, Rallis C (2007) Cell signaling and cancer. Genome Biol 8:1–3

    Article  Google Scholar 

  16. Ho GJ, Drego R, Hakimian E, Masliah E (2005) Mechanisms of cell signaling and inflammation in Alzheimer’s disease. Curr Drug Targets-Inflam Allerg 4:247–256

    Article  CAS  Google Scholar 

  17. Heink S, Yogev N, Garbers C, Herwerth M, Aly L, Gasperi C et al (2017) Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic T H 17 cells. Nat Immunol 18:74–85

    Article  CAS  Google Scholar 

  18. Seino S, Shibasaki T, Minami K (2010) Pancreatic β-cell signaling: toward better understanding of diabetes and its treatment. Proc Jpn Acad, Series B 86:563–577

    Article  CAS  Google Scholar 

  19. Guo S, Lo EH (2009) Dysfunctional cell-cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke 40:S4–S7

    Article  Google Scholar 

  20. Suda T, Moore M, Nakano T, Egashira R, Enomoto A, Hiyama S, Moritani Y (2005) Exploratory research on molecular communication between nanomachines. Gen Evolut Comput Conf (GECCO) Late Break Papers 25:29–34

    Google Scholar 

  21. Akyildiz IF, Brunetti F, Blázquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw 52:2260–2279

    Article  Google Scholar 

  22. Nakano T, Eckford AW, Haraguchi T (2013) Molecular communication. Cambridge University Press

    Google Scholar 

  23. Nakano T, Suda T, Okaie Y, Moore MJ, Vasilakos AV (2014) Molecular communication among biological nanomachines: a layered architecture and research issues. IEEE Trans Nanobio 13:169–197

    Article  Google Scholar 

  24. Chude-Okonkwo UA (2014) Diffusion-controlled enzyme-catalyzed molecular communication system for targeted drug delivery. IEEE Global Commun Conf, pp 2826–2831

    Google Scholar 

  25. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Ann Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  26. Swaney WT, Keverne EB (2009) The evolution of pheromonal communication. Behav Brain Res 200:239–247

    Article  CAS  Google Scholar 

  27. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. The Lancet 383:69–82

    Article  Google Scholar 

  28. Grover WD (2004) Mesh-based survivable networks: options and strategies for optical, MPLS, SONET, and ATM networking. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  29. Avci SN, Hu X, Ayanoglu E (2011) Recovery from link failures in networks with arbitrary topology via diversity coding. IEEE Global Telecommun Conf (GLOBECOM 2011), pp 1–6

    Google Scholar 

  30. Vasseur JP, Pickavet M, Demeester P (2004) Network recovery: protection and restoration of optical, SONET-SDH, IP, and MPLS. Elsevier

    Google Scholar 

  31. Neogy S (2015) Checkpointing with minimal recover in Adhocnet based TMR. Int J UbiComp 6(4):28–44

    Article  Google Scholar 

  32. Habibi D, Phung QV (2012) Graph theory for survivability design in communication networks. In Zhang Y (ed) New frontiers in graph theory. InTech

    Google Scholar 

  33. Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S et al (2017) Diverse applications of nanomedicine. ACS Nano 11(13):2313–2381

    Article  CAS  Google Scholar 

  34. Sadovoy A, Teh C (2015) Encapsulated biosensors for advanced tissue diagnostics. In: Meglinsky I (ed) Biophotonics for medical applications, pp 321–330

    Chapter  Google Scholar 

  35. Clewell HJ, Gearhart JM, Gentry PR, Covington TR, Van Landingham CB, Crump KS, Shipp AM (1999) Evaluation of the uncertainty in an oral reference dose for methylmercury due to interindividual variability in pharmacokinetics. Risk Anal 19:547–558

    CAS  Google Scholar 

  36. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. Journal of Controlled Release 153:198

    Article  CAS  Google Scholar 

  37. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2:2–11

    Article  Google Scholar 

  38. Understanding chemotherapy: A guide for patients and families (2014) Atlanta, GA: American Cancer Society

    Google Scholar 

  39. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37

    Article  CAS  Google Scholar 

  40. Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–1079

    Article  CAS  Google Scholar 

  41. Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2014) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327–394

    Article  Google Scholar 

  42. Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305

    Article  CAS  Google Scholar 

  43. Ghaghada KB, Saul J, Natarajan JV, Bellamkonda RV, Annapragada AV (2005) Folate targeting of drug carriers: a mathematical model. J Controll Release 104:113–128

    Article  CAS  Google Scholar 

  44. Chen X, Cheng X, Gooding JJ (2012) Multifunctional modified silver nanoparticles as ion and pH sensors in aqueous solution. Analyst 137:2338–2343

    Article  CAS  Google Scholar 

  45. Jin Y, Jia C, Huang SW, O’Donnell M, Gao X (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:41–48

    Article  Google Scholar 

  46. Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 1:209–217

    Article  CAS  Google Scholar 

  47. Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Nat Cancer Inst 99:1095–1106

    Article  CAS  Google Scholar 

  48. Balasubramaniam S, Ben-Yehuda S, Pautot S, Jesorka A, Koucheryavy Y (2013) A review of experimental opportunities for molecular communication. Nano Commun Netw 4:43–52

    Article  Google Scholar 

  49. Nakano T, Moore MJ, Wei F, Vasilakos AV, Shuai J (2012) Molecular communication and networking: opportunities and challenges. IEEE Trans Nanobio 11:135–148

    Article  Google Scholar 

  50. Farsad N, Yilmaz HB, Eckford A, Chae CB, Guo W (2014) A comprehensive survey of recent advancements in molecular communication. IEEE Commun Surv Tutor 18(3):1887–1919

    Article  Google Scholar 

  51. Abbasi QH, Yang K, Chopra N, Jornet JM, Abuali NA, Qaraqe KA, Alomainy A (2016) Nano-Communication for biomedical applications: a review on the state-of-the-art from physical layers to novel networking concepts. IEEE Access 4:3920–3935

    Article  Google Scholar 

  52. Chahibi Y, Pierobon M, Song SO, Akyildiz IF (2013) A molecular communication system model for particulate drug delivery systems. IEEE Trans Biomed Eng 60:3468–3483

    Article  Google Scholar 

  53. Wei G, Marculescu R (2014) Miniature devices in the wild: modeling molecular communication in complex extracellular spaces. IEEE J Sel Areas Commun 32:2344–2353

    Article  Google Scholar 

  54. Chahibi Y, Akyildiz IF (2014) Molecular communication noise and capacity analysis for particulate drug delivery systems. IEEE Trans Commun 62:3891–3903

    Article  Google Scholar 

  55. Okonkwo UA, Malekian R, Maharaj BT (2016) Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes. IEEE Trans Nanobio 15(3):230–245

    Article  Google Scholar 

  56. Chahibi Y, Balasingham I (2015) An intra-body molecular communication networks framework for continuous health monitoring and diagnosis. In: 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 4077–4080

    Google Scholar 

  57. Reitz C (2016) Toward precision medicine in Alzheimer’s disease. Annals of Transl Med 4(6):107–113

    Article  Google Scholar 

  58. Lammers T, Rizzo LY, Storm G, Kiessling F (2012) Personalized nanomedicine. Clin Cancer Res 18:4889–4894

    Article  CAS  Google Scholar 

  59. Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev 64:1363–1384

    Article  CAS  Google Scholar 

  60. Atakan B, Akan OB, Balasubramaniam S (2012) Body area nanonetworks with molecular communications in nanomedicine. IEEE Commun Mag 50:28–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Malekian .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chude-Okonkwo, U., Malekian, R., Maharaj, B.T. (2019). Communication Engineering Meets Medical Science: The Advanced Targeted Nanomedical Solution. In: Advanced Targeted Nanomedicine. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-11003-1_1

Download citation

Publish with us

Policies and ethics