Skip to main content

Polyhydroxyalkanoate (PHA) Bioplastics from Organic Waste

  • Chapter
  • First Online:
Biorefinery

Abstract

Polyhydroxyalkanoates (PHA) bioplastics, which are produced by pure and mixed culture biotechnology, are high-performance and truly biodegradable materials. The use of organic wastes as feedstocks for PHA production has been widely documented, though the focus has been on increasing PHA yield; knowledge of the resulting polymer quality and processability has been lacking. In this chapter, it is shown that copolymer composition, blend composition, thermal properties, molecular weight, type of processing and other characteristics such as microstructure and crystallisation kinetics all govern the mechanical properties, but property-structure relationships are complex, and therefore more research in this space is needed, regardless of the feedstock. Still, there is no doubt that organic wastes can be used as feedstocks for PHA production—particularly if they are pretreated—and there is now interest in commercialisation of PHA bioplastics from such wastes. But further advances are tempered with the conclusion that, for organic wastes to be viable feedstocks, the waste must be relatively abundant, concentrated and readily degradable. For some perspective, mass flows of organic wastewater streams from some relevant Australian industries are presented. It is shown that only if all the wastes from any given industry were collected and consolidated would there be sufficient feedstock for production of industrially relevant volumes of PHA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque MGE et al (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 130(4):411–421

    Article  Google Scholar 

  • Albuquerque MGE et al (2011) Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotechnol 151(1):66–76

    Article  Google Scholar 

  • Amstel JJAPV, Rietema K (1973) Wet-air oxidation of sewage sludge. Part II: the oxidation of real sludges. Chem Ing Tech 45(20):1205–1211

    Article  Google Scholar 

  • Arcos-Hernández MV et al (2013) Physicochemical and mechanical properties of mixed culture polyhydroxyalkanoate (PHBV). Eur Polym J 49(4):904–913

    Article  Google Scholar 

  • Arcos-Hernández M et al (2015) Value-added bioplastics from services of wastewater treatment. Water Pract Technol 10(3):546–555

    Article  Google Scholar 

  • Baroutian S et al (2016) Formation and degradation of valuable intermediate products during wet oxidation of municipal sludge. Bioresour Technol 205:280–285

    Article  Google Scholar 

  • Beccari M et al (1998) A bulking sludge with high storage response selected under intermittent feeding. Water Res 32(11):3403–3413

    Article  Google Scholar 

  • Beccari M et al (2002) Effect of different carbon sources on aerobic storage by activated sludge. Water Sci Technol 45(6):157–168

    Article  Google Scholar 

  • Bengtsson S (2009) The utilization of glycogen accumulating organisms for mixed culture production of polyhydroxyalkanoates. Biotechnol Bioeng 104(4):698–708

    Google Scholar 

  • Bengtsson S et al (2008) Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour Technol 99(3):509–516

    Article  Google Scholar 

  • Bengtsson S et al (2010) Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures. J Biotechnol 147(3):172–179

    Article  Google Scholar 

  • Bengtsson S et al (2017a) A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnol 35:42–53

    Article  Google Scholar 

  • Bengtsson S et al (2017b) Stepping stone to a value chain for PHA bioplastic using municipal activated sludge. STOWA, The Netherlands

    Google Scholar 

  • Beun JJ et al (2002) Poly-β-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Res 36(5):1167–1180

    Article  Google Scholar 

  • Bio-on S.p.A (2013) FLOS to be world’s first company to use revolutionary bioplastic designed by Bio-on. http://www.bio-on.it/project.php?lin=portoghese

  • Bio-on S.p.A (2016) Bio-on announces new multi-license maxi agreement for revolutionary PHAs bioplastic. http://www.bio-on.it/news.php. Accessed 22 Dec 2016

  • Carrère H et al (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183(1):1–15

    Article  Google Scholar 

  • Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100(23):5996–6009

    Article  Google Scholar 

  • CavaillĂ© L et al (2016) Understanding of polyhydroxybutyrate production under carbon and phosphorus-limited growth conditions in non-axenic continuous culture. Bioresour Technol 201:65–73

    Article  Google Scholar 

  • Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110(6):621–632

    Article  Google Scholar 

  • Chee J-Y et al (2010) Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. In: Current research, technology and education topics in applied microbiology and microbial biotechnology, pp 1395–1404

    Google Scholar 

  • Chen G-Q (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen GG-Q (ed) Plastics from bacteria: natural functions and applications. Springer, Berlin, pp 17–37

    Chapter  Google Scholar 

  • Dai Y et al (2007) Production of targeted poly(3-hydroxyalkanoates) copolymers by glycogen accumulating organisms using acetate as sole carbon source. J Biotechnol 129(3):489–497

    Article  Google Scholar 

  • Dai Y et al (2008) Microstructure of copolymers of polyhydroxyalkanoates produced by glycogen accumulating organisms with acetate as the sole carbon source. Process Biochem 43(9):968–977

    Article  Google Scholar 

  • Daigger GT, Grady CPL (1982) The dynamics of microbial growth on soluble substrates: a unifying theory. Water Res 16(4):365–382

    Article  Google Scholar 

  • Dias JML et al (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci 6(11):885–906

    Article  Google Scholar 

  • Dietrich K et al (2016) Producing PHAs in the bioeconomy—towards a sustainable bioplastic. Sustain Prod Consum

    Google Scholar 

  • Dionisi D et al (2004) Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol Bioeng 85(6):569–579

    Article  Google Scholar 

  • Du G, Yu J (2002a) Metabolic analysis on fatty acid utilization by Pseudomonas oleovorans: mcl-poly(3-hydroxyalkanoates) synthesis versus β-oxidation. Process Biochem 38(3):325–332

    Article  Google Scholar 

  • Du G, Yu J (2002b) Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates. Environ Sci Technol 36(24):5511–5516

    Article  Google Scholar 

  • Fradinho JC et al (2013) Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour Technol 132:146–153

    Article  Google Scholar 

  • Full Cycle Bioplastics (2018) Full cycle bioplastics. http://fullcyclebioplastics.com/

  • Gourmelon G (2015) Global plastic production rises, recycling lags—new worldwatch Institute analysis explores trends in global plastic consumption and recycling. http://www.worldwatch.org/global-plastic-production-rises-recycling-lags-0

  • Granta Design Ltd (2017) Cambridge Engineering Selector CES EduPack

    Google Scholar 

  • Gurieff N (2007) Production of biodegradable polyhydroxyalkanoate polymers using advanced biological wastewater treatment process technology. School of Chemical Engineering, The University of Queensland, Brisbane, p 160

    Google Scholar 

  • Gurieff N, Lant P (2007) Comparative life cycle assessment and financial analysis of mixed culture polyhydroxyalkanoate production. Bioresour Technol 98(17):3393–3403

    Article  Google Scholar 

  • Hafuka A et al (2011) Effect of feeding regimens on polyhydroxybutyrate production from food wastes by Cupriavidus necator. Bioresour Technol 102(3):3551–3553

    Article  Google Scholar 

  • Hazer B, SteinbĂĽchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74(1):1–12

    Article  Google Scholar 

  • Hii K et al (2014) A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Bioresour Technol 155:289–299

    Article  Google Scholar 

  • Jin F et al (2005) Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environ Sci Technol 39(6):1893–1902

    Article  Google Scholar 

  • Johnson K et al (2009) Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules 10(4):670–676

    Article  Google Scholar 

  • Johnson K, Kleerebezem R, van Loosdrecht MCM (2010) Influence of ammonium on the accumulation of polyhydroxybutyrate (PHB) in aerobic open mixed cultures. J Biotechnol 147(2):73–79

    Article  Google Scholar 

  • Kaeb H et al (2016) Market study on the consumption of biodegradable and compostable plastic products in Europe 2015 and 2020. Nova-Institute, HĂĽrth, p 6

    Google Scholar 

  • Kim YB, Lenz RW (2001) Polyesters from microorganisms. In: Babel W, SteinbĂĽchel A (eds) Biopolyesters. Springer, Berlin, pp 51–79

    Chapter  Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18(3):207–212

    Article  Google Scholar 

  • Koller M (2017) Production of polyhydroxyalkanoate (PHA) biopolyesters by extremophiles. MOJ Polym Sci 1(2)

    Google Scholar 

  • Kourmentza C et al (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4(2):55

    Article  Google Scholar 

  • Laycock B et al (2014) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 39(2):397–442

    Article  Google Scholar 

  • Lee SY, Choi J-I, Wong HH (1999) Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. Int J Biol Macromol 25(1):31–36

    Article  Google Scholar 

  • Lee W-H et al (2008) Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour Technol 99(15):6844–6851

    Article  Google Scholar 

  • Lee WS et al (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99

    Article  Google Scholar 

  • Lee J-S, Saddler J, Binod P (2016) Pretreatment of biomass. Bioresour Technol 199:1

    Article  Google Scholar 

  • Lemos PC, Serafim LS, Reis MAM (2006) Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J Biotechnol 122(2):226–238

    Article  Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6(1):1–8

    Article  Google Scholar 

  • Levett I et al (2016) Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane—the case for thermophilic bioprocessing. J Environ Chem Eng 4(4, Part A):3724–3733

    Article  Google Scholar 

  • Lyons Hardcastle J (2016) Will Lego’s $150 million sustainable plastics challenge make biobased the norm? https://www.environmentalleader.com/2016/06/will-legos-150-million-sustainable-plastics-challenge-make-biobased-the-norm/. Accessed 20 June 2016

  • Mishra VS, Mahajani VV, Joshi JB (1995) Wet air oxidation. Ind Eng Chem Res 34(1):2–48

    Article  Google Scholar 

  • Möller M et al (2011) Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. ChemSusChem 4(5):566–579

    Article  Google Scholar 

  • Morgan-Sagastume F et al (2011) Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants. Bioresour Technol 102(3):3089–3097

    Article  Google Scholar 

  • Morgan-Sagastume F et al (2014) Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment. Water Sci Technol 69(1):177–184

    Article  Google Scholar 

  • Morgan-Sagastume F et al (2015) Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresour Technol 181:78–89

    Article  Google Scholar 

  • Morgan-Sagastume F et al (2016) Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment. J Clean Prod 137:1368–1381

    Article  Google Scholar 

  • Nastu P (2011) Italy carries out plastic bag ban. In: Environmental Leader

    Google Scholar 

  • Nielsen PH (2017) Microbial biotechnology and circular economy in wastewater treatment. Microb Biotechnol 10(5):1102–1105

    Article  Google Scholar 

  • Nikodinovic-Runic J et al (2013) Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Adv Appl Microbiol 84:139–200

    Article  Google Scholar 

  • Ntaikou I et al (2018) Comparison of yields and properties of microbial polyhydroxyalkanoates generated from waste glycerol based substrates. Int J Biol Macromol 112:273–283

    Article  Google Scholar 

  • Orts WJ et al (2008) Poly(hydroxyalkanoates): biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Can J Chem 86(6):628–640

    Article  Google Scholar 

  • PlastEurope (2016) Collaboration with newlight technologies on “AirCarbon” methane-based biopackaging. https://www.plasteurope.com/news/detail.asp?id=233308. Accessed 11 Feb 2016

  • Plastic Europe (PEMRG) (2016) Plastics—the Facts 2016. An analysis of European latest plastics production, demand and waste data. Plastics Europe

    Google Scholar 

  • Pratt S, Yuan Z, Keller J (2004) Modeling aerobic carbon oxidation and storage by integrating respirometric, titrimetric, and off-gas CO2 measurements. Biotechnol Bioeng 88(2):135–147

    Article  Google Scholar 

  • Pratt S et al (2012) Microaerophilic conditions support elevated mixed culture polyhydroxyalkanoate (PHA) yields, but result in decreased PHA production rates. Water Sci Technol 65(2):243–246

    Article  Google Scholar 

  • Quillaguamán J et al (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85(6):1687–1696

    Article  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376(1):15–33

    Article  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578

    Article  Google Scholar 

  • Reis MAM et al (2003) Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess Biosyst Eng 25(6):377–385

    Article  Google Scholar 

  • Rodriguez-Perez S et al (2018) Challenges of scaling-up PHA production from waste streams. A review. J Environ Manag 205:215–230

    Article  Google Scholar 

  • Salehizadeh H, Van Loosdrecht MCM (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 22(3):261–279

    Article  Google Scholar 

  • Satoh H et al (1998) Activated sludge as a possible source of biodegradable plastic. Water Sci Technol 38(2 pt 2):103–109

    Article  Google Scholar 

  • Serafim LS et al (2004) Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol Bioeng 87(2):145–160

    Article  Google Scholar 

  • Serafim LS et al (2008) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81(4):615–628

    Article  Google Scholar 

  • Shanableh A (2000) Production of useful organic matter from sludge using hydrothermal treatment. Water Res 34(3):945–951

    Article  Google Scholar 

  • Solaiman DKY et al (2006) Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates). Appl Microbiol Biotechnol 71(6):783–789

    Article  Google Scholar 

  • SteinbĂĽchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128(3):219–228

    Article  Google Scholar 

  • Strong PJ, Gapes DJ (2012) Thermal and thermo-chemical pre-treatment of four waste residues and the effect on acetic acid production and methane synthesis. Waste Manag 32(9):1669–1677

    Article  Google Scholar 

  • Strong PJ, McDonald B, Gapes DJ (2011) Combined thermochemical and fermentative destruction of municipal biosolids: a comparison between thermal hydrolysis and wet oxidative pre-treatment. Bioresour Technol 102(9):5520–5527

    Article  Google Scholar 

  • Sudesh K (2010) Practical guide to microbial polyhydroxyalkanoates. S.R. Technology, Shrewsbury

    Google Scholar 

  • Takabatake H et al (2000) Recovery of biodegradable plastics from activated sludge process. Water Sci Technol 42(3):351–356

    Article  Google Scholar 

  • Tamis J et al (2014) Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. J Biotechnol 192:161–169

    Article  Google Scholar 

  • Tao B et al (2016) Recovery and concentration of thermally hydrolysed waste activated sludge derived volatile fatty acids and nutrients by microfiltration, electrodialysis and struvite precipitation for polyhydroxyalkanoates production. Chem Eng J 295:11–19

    Article  Google Scholar 

  • Third KA, Newland M, Cord-Ruwisch R (2003) The effect of dissolved oxygen on PHB accumulation in activated sludge cultures. Biotechnol Bioeng 82(2):238–250

    Article  Google Scholar 

  • TianAn Biopolymer (2012) TanAn Biopolmer ENMAT company details

    Google Scholar 

  • Tsz-Chun M et al (2005) Microbial synthesis and characterization of physiochemical properties of polyhydroxyalkanoates (PHAs) produced by bacteria Isolated from activated sludge obtained from the municipal wastewater works in Hong Kong. In: Davison BH et al (eds) Twenty-sixth symposium on biotechnology for fuels and chemicals. Humana Press, Totowa, NJ, pp 731–739

    Chapter  Google Scholar 

  • Valentino F et al (2015) Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels. Water Res 77:49–63

    Article  Google Scholar 

  • Valentino F et al (2017) Carbon recovery from wastewater through bioconversion into biodegradable polymers. New Biotechnol 37:9–23

    Article  Google Scholar 

  • Van Loosdrecht MCM, Pot MA, Heijnen JJ (1997) Importance of bacterial storage polymers in bioprocesses. Water Sci Technol 35(1):41–47

    Article  Google Scholar 

  • Vandi LJ et al (2018) Wood-PHA composites: a market analysis. Materials. In: Submission (Special Issue “Green composites: preparation, properties, and applications”)

    Google Scholar 

  • Verlinden RAJ et al (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449

    Article  Google Scholar 

  • Wang F et al (2014) One-pot hydrothermal conversion of cellulose into organic acids with CuO as an oxidant. Ind Eng Chem Res 53(19):7939–7946

    Article  Google Scholar 

  • Williams H (2016) IKEA and newlight sign major partnership agreement. https://www.biobasedworldnews.com/huge-investment-as-ikea-newlight-sign-10-billion-pounds-biotechnology-production-licence. Accessed 7 July 2016

  • Wilson CA, Novak JT (2009) Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res 43(18):4489–4498

    Article  Google Scholar 

  • Wyman CE et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

    Article  Google Scholar 

  • Yan X et al (2010) Hydrothermal conversion of carbohydrate biomass to lactic acid. AICHE J 56(10):2727–2733

    Article  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2(1):26–40

    Article  Google Scholar 

  • Yang B, Tao L, Wyman CE (2018) Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels Bioprod Biorefin 12(1):125–138

    Article  Google Scholar 

  • Yousefifar A et al (2017) Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: a review. Water Res 123:607–622

    Article  Google Scholar 

  • Zhang J, McCarthy S, Whitehouse R (2004) Reverse temperature injection molding of Biopol™ and effect on its properties. J Appl Polym Sci 94(2):483–491

    Article  Google Scholar 

  • Zhang S et al (2011) Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions. Bioresour Technol 102(2):1998–2003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Pratt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pratt, S., Vandi, LJ., Gapes, D., Werker, A., Oehmen, A., Laycock, B. (2019). Polyhydroxyalkanoate (PHA) Bioplastics from Organic Waste. In: Bastidas-Oyanedel, JR., Schmidt, J. (eds) Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-030-10961-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10961-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10960-8

  • Online ISBN: 978-3-030-10961-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics