Skip to main content

The Synthesis of the Switching Systems Optimal Parameters Search Algorithms

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2018)

Abstract

The problems of the optimal motion parameters search for generalized models of the dynamical systems are considered. The switching dynamic models taking into account action of non-stationery forces and optimality conditions are studied. The method for designing the dynamical models using polynomial regression is proposed. The optimal analytical solutions for some types of parametric curves are found. The algorithms of the optimal motion parameters search by means of the intelligent control methods are elaborated. The indicated algorithms and the software package allowed to execute a series of computational experiments and to carry out the stability analysis. The prospects of the results development in terms of generalization and modification of the models and the methods are presented. The results and the algorithms can be applied to the problems of automated transport design, robotics, and aircrafts motion control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleksandrov, V.V., Boltyansky, V.G., Lemak, S.S., Parusnikov, N.A., Tikhomirov, V.M.: Optimization of the Dynamics of Controlled Systems. Publishing House of Moscow State University, Moscow (2000)

    Google Scholar 

  2. Ivanov, A.A., Torokhov, S.L.: Control in Technical Systems. Forum, Moscow (2012)

    Google Scholar 

  3. Semushin, I.V., Tsiganov, A.V., Tsyganov, Yu., Golubkov, A.V., Vinokurov, D.S., et al.: Modeling and estimation of the trajectory of a moving object. Bull. South Ural State Univ. Ser. Math. Model. Program. 10(3), 108–119 (2017). https://doi.org/10.14529/mmp170309

    Article  MATH  Google Scholar 

  4. Bulatov, M.V., Lima, P.M., Thanh, D.T.: An integral method for the numerical solution of nonlinear singular boundary value problems. Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 8(4), 5–13 (2015). https://doi.org/10.14529/mmp150401

    Article  MATH  Google Scholar 

  5. Aleksandrov, V.V., Boltyanskii, V.G., Lemak, S.S., Parusnikov, N.A., Tikhomirov, V.M.: Optimal Control of Movement. Fizmatlit, Moscow (2005)

    Google Scholar 

  6. Blagodatskikh, V.I., Filippov, A.F.: Differential inclusions and optimal control. Proc. Steklov Inst. Math. 169, 194–252 (1985)

    MathSciNet  MATH  Google Scholar 

  7. Masina, O.N.: The problems of the motion control of transport systems. Transp. Sci. Technol. Control 12, 10–12 (2006)

    Google Scholar 

  8. Cellina, A.: A view on differential inclusions. Rend. Sem. Mat. Univ. Pol. Torino 63, 197–209 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Finagenko, I.A.: Differential Equations with Discontinuous Right-Hand Side. ISDCT SB RAS, Irkutsk (2013)

    Google Scholar 

  10. Masina, O.N., Druzhinina, O.V.: On optimal control of dynamical systems described by differential inclusions. In: Proceedings of the VII International Conference on Optimization Methods and Applications “Optimization and Applications” (OPTIMA-2016) held in Petrovac, Montenegro, 25 September–2 October, pp. 104–105. Dorodnicyn Computing Centre of FRC CSC RAS, Moscow (2016)

    Google Scholar 

  11. Zhang, G., Shen, Y., Wang, L.: Global anti-synchronization of a class of chaotic memristive neural networks with time-varying delays. Neural Netw. 46(1), 195–203 (2013). https://doi.org/10.1016/j.neunet.2013.04.001

    Article  MATH  Google Scholar 

  12. Wu, A., Wen, S., Zeng, Z.: Synchronization control of a class of memristor-based recurrent neural networks. Inf. Sci. 183(1), 106–116 (2012). https://doi.org/10.1016/j.ins.2011.07.044

    Article  MathSciNet  MATH  Google Scholar 

  13. Andrzejczak, G.: Spline reproducing kernels on R and error bounds for piecewise smooth LBV problems. Appl. Math. Comput. 320, 27–44 (2018). https://doi.org/10.1016/j.amc.2017.09.021

    Article  MathSciNet  Google Scholar 

  14. Ghasemi, M.: High order approximations using spline-based differential quadrature method: Implementation to the multi-dimensional PDEs. Appl. Math. Modell. 46, 63–80 (2017). https://doi.org/10.1016/j.apm.2017.01.052

    Article  MathSciNet  Google Scholar 

  15. Zin, S.M.: Quartic B-spline and two-step hybrid method applied to boundary value problem. In: AIP Conference Proceedings, vol. 1522, no. 744 (2013). https://doi.org/10.1063/1.4801200

  16. Druzhinina, O.V., Masina, O.N., Petrov, A.A.: Model of motion control of transport system taking into account conditions of optimality, multivaluence, and variability. Transp. Sci. Technol. Control 4, 3–9 (2017)

    Google Scholar 

  17. Druzhinina, O.V., Masina, O.N., Petrov, A.A.: Approach elaboration to solution of the problems of motion control of technical systems modeled by differential inclusions. Inf. Meas. Control. Syst. 15(4), 64–72 (2017)

    Google Scholar 

  18. Druzhinina, O.V., Masina, O.N., Petrov, A.A.: Models for control of technical systems motion taking into account optimality conditions. In: Proceedings of the VIII International Conference on Optimization Methods and Applications “Optimization and Application” (OPTIMA-2017) held in Petrovac, Montenegro, 2–7 October, pp. 386–391. Dorodnicyn Computing Centre of FRC CSC RAS, Moscow (2017). http://ceur-ws.org/Vol-1987/paper-56.pdf

  19. Wales, D., Doye, J.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 Atoms. J. Phys. Chem. A 101, 5111–5116 (1997)

    Article  Google Scholar 

  20. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27(1), 61–106 (2016). https://doi.org/10.1016/j.swevo.2016.01.004

    Article  Google Scholar 

  21. Yu, W., et al.: Differential evolution with two-level parameter adaptation. IEEE Trans. Cybern. 44(7), 1080–1099 (2014). https://doi.org/10.1109/TCYB.2013.2279211

    Article  Google Scholar 

  22. Hamdy, M., Nguyen, A.-T., Hensen, J.L.M.: A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems. Energy Build. 121, 57–71 (2016). https://doi.org/10.1016/j.enbuild.2016.03.035

    Article  Google Scholar 

  23. Arqub, O.A., Abo-Hammour, Z.: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf. Sci. 279, 396–415 (2014). https://doi.org/10.1016/j.ins.2014.03.128

    Article  MathSciNet  MATH  Google Scholar 

  24. Elsayed, S.M., Sarker, R.A., Essam, D.L.: A new genetic algorithm for solving optimization problems. Eng. Appl. Artif. Intell. 27, 57–69 (2014). https://doi.org/10.1016/j.engappai.2013.09.013

    Article  Google Scholar 

  25. Ullah, A., Malik, S.A., Alimgeer, K.S.: Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations. PLOS ONE 13(1) (2018). https://doi.org/10.1371/journal.pone.0191103

    Article  Google Scholar 

  26. Tenenev, V.A., Rusyak, I.G., Sufiyanov, V.G., Ermolaev, M.A., Nefedov, D.G.: Construction of approximate mathematical models on results of numerical experiments. Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 8(1), 76–87 (2015). https://doi.org/10.14529/mmp150106

    Article  MATH  Google Scholar 

  27. He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016). https://doi.org/10.1109/TCYB.2015.2411285

    Article  Google Scholar 

  28. He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 334–344 (2016). https://doi.org/10.1109/TSMC.2015.2429555

    Article  Google Scholar 

  29. Chen, C.L.P., Liu, Y.-J., Wen, G.-X.: Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans. Cybern. 44(5), 583–593 (2014). https://doi.org/10.1109/TCYB.2013.2262935

    Article  Google Scholar 

  30. Raja, M., Abbas, S., Syam, M., Wazwaz, A.: Design of neuro-evolutionary model for solving nonlinear singularly perturbed boundary value problems. Appl. Soft Comput. 62, 373–394 (2018). https://doi.org/10.1016/j.asoc.2017.11.002

    Article  Google Scholar 

  31. Vasiliev, S.N., Novikov, D.A., Bakhtadze, N.N.: Intelligent control of industrial processes. Manuf. Model. Manag. Control 1(7), 49–57 (2013). Part 1

    Google Scholar 

  32. Druzhinina, O.V., Masina, O.N.: On approaches to the stability analysis of nonlinear dynamic systems with logical controllers. Modern Inf. Technol. IT-Educ. 13(2), 40–49 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Druzhinina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Druzhinina, O., Masina, O., Petrov, A. (2019). The Synthesis of the Switching Systems Optimal Parameters Search Algorithms. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y., Malkova, V., Posypkin, M. (eds) Optimization and Applications. OPTIMA 2018. Communications in Computer and Information Science, vol 974. Springer, Cham. https://doi.org/10.1007/978-3-030-10934-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10934-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10933-2

  • Online ISBN: 978-3-030-10934-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics