Skip to main content

Stem Cells Have More Than Five Senses

  • Chapter
  • First Online:
Biophysics and Neurophysiology of the Sixth Sense

Abstract

The application of both embryonic stem cells and adult stem cells has been subject to certain restrictions that could be removed with the development of induced pluripotent stem (iPS) cells. The induction of pluripotency is a complex process through which the effects of (a) exogenous and endogenous transcription factors and their interaction with each other and with molecular components of chromosome, (b) matrix elasticity and nuclear plasticity, and (c) intrinsic and extrinsic mechanisms of the asymmetric cell divisions are pooled and will be pronounced as the stem cell fate. Also, stem cells strongly feel about the effects of both ionizing and nonionizing radiation. The effects are dose-dependent and include cell death, mutagenesis, and tumorigenesis. Nevertheless, stem cells have been proven to play a role in the repair of radiation-induced multiorgan damage. Understanding the biology of stem cells, particularly iPS cells, and their biophysical behavior, especially upon exposure to radiation, helps to make further advances in both the field of regenerative medicine and disease treatment and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3:1.

    Article  PubMed  Google Scholar 

  2. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    Article  CAS  PubMed  Google Scholar 

  3. Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature. 2009;462(7272):433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 2002;298(5593):597–600.

    Article  CAS  PubMed  Google Scholar 

  5. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6(2):e1000029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  7. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  9. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324(5935):1673–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997;88(3):287–98.

    Article  CAS  PubMed  Google Scholar 

  11. Eminli S, Utikal J, Arnold K, Jaenisch R, Hochedlinger K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells. 2008;26(10):2467–74.

    Article  CAS  PubMed  Google Scholar 

  12. Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro Miguel L, et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell. 2007;25(3):473–81.

    Article  CAS  PubMed  Google Scholar 

  13. Thomas G, Chung M, Cohen CJ. A dihydropyridine (Bay k 8644) that enhances calcium currents in guinea pig and calf myocardial cells. A new type of positive inotropic agent. Circ Res. 1985;56(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  14. Shi Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;3(5):568–74.

    Article  CAS  PubMed  Google Scholar 

  15. Chaffey N, Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 4th edn. Annals of Botany. 2003;91(3), 401.

    Google Scholar 

  16. Buxboim A, Ivanovska IL, Discher DE. Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’outside and in? J Cell Sci. 2010;123(3):297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5(1):17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA, Kraft P, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010;329(5995):1078–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate modulus directs neural stem cell behavior. Biophys J. 2008;95(9):4426–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  21. Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE. Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci. 2007;104(40):15619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chowdhury F, Na S, Li D, Poh Y-C, Tanaka TS, Wang F, et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater. 2010;9(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  23. Watt FM, Hogan BLM. Out of Eden: stem cells and their niches. Science. 2000;287(5457):1427.

    Article  CAS  PubMed  Google Scholar 

  24. Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 2006;441(7097):1068–74.

    Article  CAS  PubMed  Google Scholar 

  25. Ng K-H. Non-ionizing radiations–sources, biological effects, emissions and exposures. In: Proceedings of the international conference on non-ionizing radiation at UNITEN. Oct 20 2003.

    Google Scholar 

  26. Kwee S, Raskmark P. Changes in cell proliferation due to environmental non-ionizing radiation 1. ELF electromagnetic fields. Bioelectrochem Bioenerg. 1995;36(2):109–14.

    Article  CAS  Google Scholar 

  27. Kwee S, Raskmark P. Changes in cell proliferation due to environmental non-ionizing radiation: 2. Microwave radiation. Bioelectrochem Bioenergetics. 1998;44(2):251–5.

    Article  CAS  Google Scholar 

  28. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci. 2001;98(9):5116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alvarado AS. Planarian regeneration: its end is its beginning. Cell. 2006;124(2):241–5.

    Article  CAS  Google Scholar 

  30. Reddien PW, Alvarado AS. Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol. 2004;20:725–57.

    Article  CAS  PubMed  Google Scholar 

  31. Hayashi T, Asami M, Higuchi S, Shibata N, Agata K. Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Develop Growth Differ. 2006;48(6):371–80.

    Article  Google Scholar 

  32. Brewen JG, Preston RJ. Chromosome aberrations as a measure of mutagenesis: comparisons in vitro and in vivo and in somatic and germ cells. Environ Health Perspect. 1973;6:157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luft S, Pignalosa D, Nasonova E, Arrizabalaga O, Helm A, Durante M, et al. Fate of D3 mouse embryonic stem cells exposed to X-rays or carbon ions. Mutat Res/Genet Toxicol Environ Mutagen. 2014;760:56–63.

    Article  CAS  Google Scholar 

  34. Thomas JW, LaMantia C, Magnuson T. X-ray-induced mutations in mouse embryonic stem cells. Proc Natl Acad Sci. 1998;95(3):1114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brewen JG, Preston RJ, Jones KP, Gosslee DG. Genetic hazards of ionizing radiations: cytogenetic extrapolations from mouse to man. Mutat Res/Genet Toxicol Environ Mutagen. 1973;17(2):245–54.

    Article  CAS  Google Scholar 

  36. Baskar R, Lee KA, Yeo R, Yeoh K-W. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Leon MB, Teirstein PS, Moses JW, Tripuraneni P, Lansky AJ, Jani S, et al. Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting. N Engl J Med. 2001;344(4):250–6.

    Article  CAS  PubMed  Google Scholar 

  38. Cmielova J, Havelek R, Soukup T, Jiroutová A, Visek B, Suchánek J, et al. Gamma radiation induces senescence in human adult mesenchymal stem cells from bone marrow and periodontal ligaments. Int J Radiat Biol. 2012;88(5):393–404.

    Article  CAS  PubMed  Google Scholar 

  39. Nicolay NH, Sommer E, Lopez R, Wirkner U, Trinh T, Sisombath S, et al. Mesenchymal stem cells retain their defining stem cell characteristics after exposure to ionizing radiation. Int J Radiat Oncol Biol Phys. 2013;87(5):1171–8.

    Article  CAS  PubMed  Google Scholar 

  40. Tseng BP, Lan ML, Tran KK, Acharya MM, Giedzinski E, Limoli CL. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation. Redox Biol. 2013;1(1):153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Daynac M, Chicheportiche A, Pineda JR, Gauthier LR, Boussin FD, Mouthon M-A. Quiescent neural stem cells exit dormancy upon alteration of GABA A R signaling following radiation damage. Stem Cell Res. 2013;11(1):516–28.

    Article  CAS  PubMed  Google Scholar 

  42. Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, Frick J, et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med. 2003;5(12):1028–38.

    Article  PubMed  Google Scholar 

  43. Sheline GE. Radiation therapy of brain tumors. Cancer. 1977;39(S2):873–81.

    Article  CAS  PubMed  Google Scholar 

  44. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    Article  CAS  PubMed  Google Scholar 

  45. Patchell RA, Tibbs PA, Regine WF, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA. 1998;280(17):1485–9.

    Article  CAS  PubMed  Google Scholar 

  46. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bagchi D, Bagchi M, Hassoun EA, Stohs SJ. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology. 1995;104(1):129–40.

    Article  CAS  PubMed  Google Scholar 

  48. Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med. 1991;91(3):S14–22.

    Article  Google Scholar 

  49. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241(4861):58–62.

    Article  CAS  PubMed  Google Scholar 

  50. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.

    Article  CAS  PubMed  Google Scholar 

  52. Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, et al. Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology. 2005;16(2):137–45.

    Article  PubMed  Google Scholar 

  53. Howe GR, Nair RC, Newcombe HB, Miller AB, Abbatt JD. Lung cancer mortality (1950–80) in relation to radon daughter exposure in a cohort of workers at the Eldorado Beaverlodge uranium mine. J Natl Cancer Inst. 1986;77(2):357–62.

    CAS  PubMed  Google Scholar 

  54. Hornung RW, Meinhardt TJ. Quantitative risk assessment of lung cancer in US uranium miners. Health Phys. 1987;52(4):417–30.

    Article  CAS  PubMed  Google Scholar 

  55. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ. 2005;330(7485):223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK. Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proc Natl Acad Sci. 2000;97(5):2099–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Azzam EI, de Toledo SM, Gooding T, Little JB. Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat Res. 1998;150(5):497–504.

    Article  CAS  PubMed  Google Scholar 

  58. Kadhim MA, Marsden SJ, Malcolmson AM, Folkard M, Goodhead DT, Prise KM, et al. Long-term genomic instability in human lymphocytes induced by single-particle irradiation. Radiat Res. 2001;155(1):122–6.

    Article  CAS  PubMed  Google Scholar 

  59. Little JB, Nagasawa H, Pfenning T, Vetrovs H. Radiation-induced genomic instability: delayed mutagenic and cytogenetic effects of X rays and alpha particles. Radiat Res. 1997;148(4):299–307.

    Article  CAS  PubMed  Google Scholar 

  60. Watson GE. Long-term in vivo transmission of alpha-particle-induced chromosomal instability in murine haemopoietic cells. Int J Radiat Biol. 1996;69(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  61. Sokolov MV, Neumann RD. Radiation-induced bystander effects in cultured human stem cells. PLoS One. 2010;5(12):e14195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR, et al. Targeted α particle immunotherapy for myeloid leukemia. Blood. 2002;100(4):1233–9.

    CAS  PubMed  Google Scholar 

  63. Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, et al. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51(2):311–28.

    Article  CAS  PubMed  Google Scholar 

  64. Hobbs RF, Song H, Watchman CJ, Bolch WE, Aksnes A-K, Ramdahl T, et al. A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy. Phys Med Biol. 2012;57(10):3207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kadhim MA, Macdonald DA, Goodhead DT, Lorimore SA, Marsden SJ, Wright EG. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature. 1992;355(6362):738–40.

    Article  CAS  PubMed  Google Scholar 

  66. Littlefield LG, Travis LB, Sayer AM, Voelz GL, Jensen RH, Boice JD Jr. Cumulative genetic damage in hematopoietic stem cells in a patient with a 40-year exposure to alpha particles emitted by thorium dioxide. Radiat Res. 1997;148(2):135–44.

    Article  CAS  PubMed  Google Scholar 

  67. Anderson M, et al. Complex chromosome aberrations in peripheral blood lymphocytes as a potential biomarker of exposure to high-LET alpha-particles. Int J Radiat Biol. 2000;76(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  68. Saghazadeh A, Saghazadeh M, Rezaei N. Immunology of cutaneous tumors and immunotherapy for melanoma. In: Rezaei N, editor. Cancer immunology. Berlin/Heidelberg: Springer; 2015.

    Google Scholar 

  69. Miyauchi-Hashimoto H, Tanaka K, Horio T. Enhanced inflammation and immunosuppression by ultraviolet radiation in xeroderma pigmentosum group A (XPA) model mice. J Invest Dermatol. 1996;107(3):343–8.

    Article  CAS  PubMed  Google Scholar 

  70. Gennery AR, Cant AJ, Jeggo PA. Immunodeficiency associated with DNA repair defects. Clin Exp Immunol. 2000;121(1):1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Epstein FH, Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med. 1999;340(17):1341–8.

    Article  Google Scholar 

  72. Gniadecki R, Hansen M, Wulf HC. Two pathways for induction of apoptosis by ultraviolet radiation in cultured human keratinocytes. J Investig Dermatol. 1997;109(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  73. Rappold I, Iwabuchi K, Date T, Chen J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage–signaling pathways. J Cell Biol. 2001;153(3):613–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Markovà E, Malmgren LOG, Belyaev IY. Microwaves from mobile phones inhibit 53BP1 focus formation in human stem cells more strongly than in differentiated cells: possible mechanistic link to cancer risk. Environ Health Perspect. 2010;118(3):394–9.

    Article  PubMed  Google Scholar 

  75. Czyz J, Guan K, Zeng Q, Nikolova T, Meister A, Schoenborn F, et al. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics. 2004;25(4):296–307.

    Article  CAS  PubMed  Google Scholar 

  76. Rossi L, Salvestrini V, Ferrari D, Di Virgilio F, Lemoli RM. The sixth sense: hematopoietic stem cells detect danger through purinergic signaling. Blood. 2012;120(12):2365–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saghazadeh, A., Khaksar, R., Rezaei, N. (2019). Stem Cells Have More Than Five Senses. In: Rezaei, N., Saghazadeh, A. (eds) Biophysics and Neurophysiology of the Sixth Sense. Springer, Cham. https://doi.org/10.1007/978-3-030-10620-1_26

Download citation

Publish with us

Policies and ethics