Skip to main content

Current Efforts for the Production and Use of Biogas Around the World

  • Chapter
  • First Online:

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 9))

Abstract

Biogas is a renewable energy source that can be generated from the digestion of a variety of organic materials and waste. Organic wastes used for biogas include animal manure, human excreta and other agricultural wastes, slaughterhouses and food industries residues or even urban solid waste. However, in some developed countries it has been used corn, barley, sunflower and sorghum as other energy sources. Biogas systems differ strongly between locations, form, cost structure and usage patterns. This difference is mainly related to the development condition of the country. When implemented properly, biogas systems can serve multiple purposes. Digesters are considered a clean and alternative technology that can help distant communities with their energy necessities by improving living conditions or even economical source. Considering this, the present chapter will be addressed: (i) Biogas production around the world; (ii) Feeding material used in different continents to generate biogas; (iii) usage of biogas produced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas handbook. BiG>East project funded by the European Commission (EIE/07/214), University of Southern Denmark Esbjerg, Denmark, p 142, ISBN 978-87-992962-0-0

    Google Scholar 

  • Alemán-Nava GS, Meneses-Jácome A, Cárdenas-Chávez DL, Díaz-Chavez R, Scarlat N, Dallemand JF, Parra R (2015) Bioenergy in Mexico: status and perspective. Biofuels Bioprod Biorefining 9(1):8–20

    Article  Google Scholar 

  • American Biogas Council (2017) Operational biogas systems in the U.S. https://www.americanbiogascouncil.org

  • Amigun B, Parawira W, Musango JK, Aboyade AO, Badmos AS (2012) Anaerobic biogas generation for rural area energy provision in Africa. Biogas Sunil Kumar, IntechOpen. https://doi.org/10.5772/32630. Available from: https://www.intechopen.com/books/biogas/anaerobic-biogas-generation-for-rural-area-energy-provision-in-africa

    Google Scholar 

  • Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv

    Google Scholar 

  • Bakker RRC, Elbersen HW, Poppens RP, Lesschen JP (2013) Rice straw and wheat straw-potential feedstocks for the biobased economy. NL Agency

    Google Scholar 

  • Bielski S, Marks-Bielska R (2015) The potential for agricultural biogas production in Poland energy and clean technologies. In: Book series: international multidisciplinary scientific geoconference-SGEM, pp 575–580

    Google Scholar 

  • Bondesson PM, Galbe M, Zacchi G (2013) Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid. Biotechnol Biofuels 6(1):11

    Article  Google Scholar 

  • CBA (2017) Biogas projects in Canada. Canada Biogas Association. https://biogasassociation.ca/about_biogas/projects_canada

  • Cooper CJ, Laing CA (2017) A macro analysis of crop residue and animal wastes as a potential energy source in Africa. J Energy South Afr 18(1):10–19

    Google Scholar 

  • Costa JC, Barbosa SG, Alves MM, Sousa DZ (2012) Thermochemical pre-and biological co-treatments to improve hydrolysis and methane production from poultry litter. Biores Technol 111:141–147

    Article  Google Scholar 

  • Edwards J, Othman M, Burn S (2015) A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renew Sustain Energy Rev 52:815–828

    Article  Google Scholar 

  • European Biogas Association (2015) EBA biomethane & biogas report 2015. Disponible sur http://european-biogas.eu/2015/12/16/biogasreport2015/ Consulté le 5(04)

  • European Biogas Association (Brussels) (2014) EBA biogas report. http://europeanbiogas.eu/2014/12/16/4331/

  • European Statistics (2017). http://ec.europa.eu/eurostat

  • Garfí M, Martí-Herrero J, Garwood A, Ferrer I (2016) Household anaerobic digesters for biogas production in Latin America: a review. Renew Sustain Energy Rev 60:599–614

    Article  Google Scholar 

  • Global Intelligence Alliance (2010) How to profit from biogas market developments GIA industries white paper. United States

    Google Scholar 

  • Global Methane Initiative (2018) Global map of methane sites

    Google Scholar 

  • Grando RL, de Souza Antune AM, da Fonseca FV, Sánchez A, Barrena R, Font X (2017) Technology overview of biogas production in anaerobic digestion plants: a European evaluation of research and development. Renew Sustain Energy Rev 80:44–53

    Article  Google Scholar 

  • Guerini Filho M, Lumi M, Hasan C, Marder M, Leite LC, Konrad O (2018) Energy recovery from wine sector wastes: a study about the biogas generation potential in a vineyard from Rio Grande do Sul, Brazil. Sustain Energy Technol Assess 29:44–49

    Google Scholar 

  • Hendroko SR, Sasmito A, Adinurani PG, Nindita A, Yudhanto AS, Nugroho YA, Tony L, Mel M (2015) The study of slurry recirculation to increase biogas productivity from Jatropha curcas Linn. Capsule Husk in Two Phase Digestion. Energy Proc 65:300–308

    Article  Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Biores Technol 100(22):5478–5484

    Article  Google Scholar 

  • Igliński B, Buczkowski R, Iglińska A, Cichosz M, Piechota G, Kujawski W (2012) Agricultural biogas plants in Poland: investment process, economical and environmental aspects, biogas potential. Renew Sustain Energy Rev 16(7):4890–4900

    Article  Google Scholar 

  • International Energy Agency (2016) IEA Bioenergy Task 37 Country Reports Summary 2015. http://www.ieabioenergy.com/wp-content/uploads/2015/01/IEA-Bioenergy-Task-37-Country-Report-Summary-2014_Final.pdf

  • International Gas Union (2015) A global review of drivers and regional trends, International Gas Union (IGU). Biogas—from refuse to energy. https://www.igu.org/sites/default/files/node-page-field_file/IGU%20Biogas%20Report%202015.pdf

  • IRENA (2018) Renewable capacity statistics 2018. International Renewable Energy Agency (IRENA), Abu Dhabi. ISBN: 978-92-9260-057-0

    Google Scholar 

  • Jabłoński SJ, Kułażyński M, Sikora I, Łukaszewicz M (2017) The influence of different pretreatment methods on biogas production from Jatropha curcas oil cake. J Environ Manage 203:714–719

    Article  Google Scholar 

  • Kapoor R, Vijay VD (2013) 5.2 Evaluation of existing low cost gas bottling systems for vehicles use adaption in developing economies. Public deliverable EU FP7 VALORGAS project (grant agreement no. 241334)

    Google Scholar 

  • KC S, Takara D, Hashimoto AG, Khanal SK (2014) Biogas as a sustainable energy source for developing countries: opportunities and challenges. renew Sustain Energy Rev 31:846–859

    Article  Google Scholar 

  • Krzywika A, Szwaja S (2017) Putrid Potatoes as biomass charge to an agricultural biomass-to-biogas power plant. Energy Proc 118:40–45

    Article  Google Scholar 

  • Linville JL, Shen Y, Wu MM, Urgun-Demirtas M (2015) Current state of anaerobic digestion of organic wastes in North America. Curr Sustain Renew Energy Rep 2(4):136–144

    Article  Google Scholar 

  • López I (2016) The potential of biogas production in Uruguay. Renew Sustain Energy Rev 54:1580–1591

    Article  Google Scholar 

  • López I, Borzacconi L (2017) Anaerobic digestion for agro-industrial wastes: a latin American perspective. Int J Eng Appl Sci 4(8):71–76

    Google Scholar 

  • Luostarinen S, Normak A, Edstrøm M (2011) Overview of biogas technology. Over Biogas Technol 47. (Baltic manure WP6 Energy potentials)

    Google Scholar 

  • Ministry of New and Renewable Energy (2014) Renewable energy for rural applications, Annual Report 2013–2014. http://mnre.gov.in/file-manager/annual-report/2013-2014/EN/rerp.html

  • Muñoz R, Meier L, Diaz I, Jeison D (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Bio/Technol 14(4):727–759

    Article  Google Scholar 

  • Nielsen HB, Angelidaki I (2008) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Biores Technol 99(17):7995–8001

    Article  Google Scholar 

  • Nordic Energy Research (2010) Mapping biogas in the Nordic Countries. Oslo: Sund Energy As, 24 p. http://www.nordicenergy.org/wp-content/uploads/2012/01/mapping_biogas_in_the_nordic_countries_final1.pdf

  • Omer AM, Fadalla Y (2013) Biogas technology in Sudan, technical note. Renew Energy 28:499–507

    Google Scholar 

  • Passos F, Uggetti E, Carrère H, Ferrer I (2014) Pretreatment of microalgae to improve biogas production: a review. Biores Technol 172:403–412

    Article  Google Scholar 

  • REN21 (2018) Renewables 2018 Global Status Report (Paris: REN21 Secretariat). ISBN: 978-3-9818911-3-3

    Google Scholar 

  • Rupf GV, Bahri PA, de Boer K, McHenry MP (2015) The energy production potential from organic solid waste in Sub-Saharan Africa. In: International conference on solid waste 2015: knowledge transfer for sustainable resource management (ICSW2015), 19–23 May, Hong Kong

    Google Scholar 

  • Scarlat N, Dallemand JF, Fahl F (2018) Biogas: developments and perspectives in Europe. Renew Energy 129:457–472

    Article  Google Scholar 

  • Skovsgaard L, Jacobsen HK (2017) Economies of scale in biogas production and the significance of flexible regulation. Energy Policy 101:77–89

    Article  Google Scholar 

  • SNV (2010) Domestic biogas newsletter, issue 3, Aug 2010

    Google Scholar 

  • Tápparo DC, Viancelli A, Amaral ACD, Fongaro G, Steinmetz RLR, Magri ME, Kunz A (2018) Sanitary effectiveness and biogas yield by anaerobic co-digestion of swine carcasses and manure. Environ Technol (just-accepted):1–28

    Google Scholar 

  • Tsapekos P, Kougias PG, Treu L, Campanaro S, Angelidaki I (2017) Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production. Appl Energy 185:126–135

    Article  Google Scholar 

  • Tuesorn S, Wongwilaiwalin S, Champreda V, Leethochawalit M, Nopharatana A, Techkarnjanaruk S, Chaiprasert P (2013) Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium. Biores Technol 144:579–586

    Article  Google Scholar 

  • US EPA (2017) United States environmental protection agency AgStar program biogas recovery in the agriculture sector. https://www.epa.gov/agstar

  • Vasco-Correa J, Khanal S, Manandhar A, Shah A (2018) Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Biores Technol 247:1015–1026

    Article  Google Scholar 

  • Venturin B, Camargo AF, Scapini T, Mulinari J, Bonatto C, Bazoti S, Steinmetz RLR (2018) Effect of pretreatments on corn stalk chemical properties for biogas production purposes. Bioresour Technol

    Google Scholar 

  • Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109(1–3):263–274

    Article  Google Scholar 

  • Wilkinson A (2011) Anaerobic digestion of corn ethanol thin stillage for biogas production in batch and by downflow fixed film reactor (Doctoral dissertation, Université d’Ottawa/University of Ottawa)

    Google Scholar 

  • World Bioenergy Association (WBA) (2017) WBA global bioenergy statistics 2017. https://doi.org/10.1016/0165-232X(80)90063-4

  • Yong Z, Dong Y, Zhang X, Tan T (2015) Anaerobic co-digestion of food waste and straw for biogas production. Renew Energy 78:527–530

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Viancelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viancelli, A., Michelon, W., ElMahdy, E.M. (2019). Current Efforts for the Production and Use of Biogas Around the World. In: Treichel, H., Fongaro, G. (eds) Improving Biogas Production. Biofuel and Biorefinery Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-10516-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10516-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10515-0

  • Online ISBN: 978-3-030-10516-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics