Skip to main content

Discovery of New Extremophilic Enzymes from Diverse Fungal Communities

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1975 Accesses

Abstract

Extremophiles are microorganisms that are found in environments of extreme temperature (−2–15, 60–110 °C), ionic strength (2–5 M NaCl), or pH (<4, >9). Extremophiles are a source of enzymes (extremozymes) with extreme stability, and the application of these enzymes as biocatalysts has attracted attention because they are stable and active under conditions at which the normal enzymes do not work. These microorganisms are capable of surviving under extreme conditions in non-conventional environments, and their enzymes are adapted to these conditions. The properties of their enzymes have been optimized for these conditions. Extremophiles, particularly those from the Archaea, have novel metabolic pathways; hence, they serve as a source of enzymes with novel activities and applications. Among eukaryotes, fungi are the most versatile and ecologically successful phylogenetic lineage. With the exception of hyperthermophily, they adapt well to extreme environments. Fungi are found to live in acidic and metal-enriched waters from mining regions, alkaline conditions, hot and cold deserts, and the deep ocean and in hypersaline regions such as the Dead Sea. Extremophilic enzymes from fungi have been sought for because of the increasing industrial demands for biocatalysts that can cope with industrial process needs. Extremozymes have a great economic potential in many industrial processes, including agricultural, chemical, and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahim AA, Bayoumi A (2011) Thermostable xylanases production by thermophilic fungi from some lignocellulosic substrates. J Basic Appl Sci Res 1:2777–2785

    Google Scholar 

  • Abdullah SK, Zora SE (1993) Chaetomium mesopotamicum, a new thermophilic species from Iraqi soil. Cryptogam Bot 3:387–389

    Google Scholar 

  • Adapa V, Ramya L, Pulicherla K, Rao KS (2014) Cold active pectinases: advancing the food industry to the next generation. Appl Biochem Biotechnol 172:2324–2337

    Google Scholar 

  • Ahmed S, Imdad SS, Jamil A (2012) Comparative study for the kinetics of extracellular xylanases from Trichoderma Harzianum and Chaetomium Thermophilum. Electron J Biotechnol 5(3):3

    Google Scholar 

  • Ali I, Akbar A, Anwar M, Yanwisetpakdee B, Prasongsuk S, Lotrakul P, Punnapayak H (2014) Purification and characterization of extracellular, polyextremophilic α- amylase obtained from halophilic Engyodontium album. Iran J Biotechnol 12:1155

    Google Scholar 

  • Allen PJ, Emerson R (1949) Guayule rubber: microbiological improvement by shrub retting. Industrial & Engineering Chemistry 41(2):346–365

    Google Scholar 

  • Almeida MN, Guimar~Aes VM, Falkoski DL, Visser EM, Siqueira GA, Milagres AMF, Rezende ST (2013) Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae. J Biotechnol 168:71–77

    Google Scholar 

  • Antranikian G (1992) Microbial degradation of starch. In: Winkelmann G (ed) Microbial degradation of natural products, vol 2. VCH, Weilheim, pp 28–50

    Google Scholar 

  • Anwar A, Saleemuddin M (1998) Alkaline proteases- a review. Bioresour Technol 64:175–183

    Google Scholar 

  • Azad K, Md. Abdul H, Hossain F (2013) Optimization of culture conditions for the production of xylanase by two thermophilic fungi under solid state fermentation. J Asiat Soc Bangladesh Sci 39(1):43–51

    Google Scholar 

  • Bailey MJ, Poutanen K (1989) Production of xylanolytic enzymes by strains of Aspergillus. Appl Microbiol Biotechnol 30:5–10

    Google Scholar 

  • Bajaj BK, Abbass M (2011) Studies on an alkali-thermostable xylanase from Aspergillus fumigatus MA28. 3 Biotech 1:161–171

    Google Scholar 

  • Bajaj BK, Khajuria YP, Singh VP (2012) Agricultural residues as potential substrates for production of xylanases from alkali-thermotolerant bacterial isolate. Biocatal Agric Biotechnol 1:314–320

    Google Scholar 

  • Bajaj BK, Sharma M, Rao RS (2014) Agricultural residues for production of cellulase from Sporotrichum thermophile Lar5 and its application for saccharification of rice straw. J Mater Environ Sci 5:1454–1460

    Google Scholar 

  • Baker PW, Kennedy J, Morrissey J, O’gara F, Dobson ADW, Marchesi JR (2010) Endoglucanase activities and growth of marine-derived fungi isolated from the sponge Haliclona simulans. J Appl Microbiol 108:1668–1675

    Google Scholar 

  • Basit A, Liu J, Miao T, Zheng F, Rahim K, Lou H, Jiang W (2018) Characterization of two endo-_-1, 4-xylanases from Myceliophthora thermophila and their saccharification efficiencies, synergistic with commercial cellulase. Front Microbiol 9:233

    Google Scholar 

  • Benoit I, Coutinho PM, Schols HA, Gerlach JP, Henrissat B, De Vries RP (2012) Degradation of different pectins by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin. BMC Genomics 13:321

    Google Scholar 

  • Berglund P, Hult K (2000) Biocatalytic synthesis of enantiopure compounds using lipases. In: Patel RN (ed) Stereoselective biocatalysis. Marcel Dekker, New York, pp 633–657

    Google Scholar 

  • Bergquist P, Te’o V, Gibbs M, Cziferszky A, De Faria FP, Azevedo M, Nevalainen H (2002) Expression of xylanase enzymes from thermophilic microorganisms in fungal hosts. Extremophiles 6:177–184

    Google Scholar 

  • Berhanu A, Gessesse A (2012) Microbial lipases and their industrial applications: review. Biotechnology 11:100–118

    Google Scholar 

  • Bo J, Jørgen O (1992) Physicochemical properties of purified α-amylases from the thermophilic fungus Thermomyces lanuginosus. Enzym Microb Technol 14:112–116

    Google Scholar 

  • Bonugli-Santos R, Durrant LR, Sette LD (2012) The production of ligninolytic enzymes by marine-derived basidiomycetes and their biotechnological potential in the biodegradation of recalcitrant pollutants and the treatment of textile effluents. Water Air Soil Pollut 223:2333–2345

    Google Scholar 

  • Brienzo M, Arante V, Milagres AMF (2008) Enzymology of the thermophilic ascomycetous fungus Thermoascus aurantiacus. Fungal Biol Rev 22:120–130

    Google Scholar 

  • Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V, Pichyangkura R, Rengpipat S et al (2010) Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. J Biosci Bioeng 110:18–25

    Google Scholar 

  • Cai Y, Wang L, Liao X, Ding Y, Sun J (2009) Purification and partial characterization of two new cold-adapted lipases from mesophilic Geotrichum sps Sybc Wu-3. Process Biochem 44:786–790

    Google Scholar 

  • Capece MC, Clark E, Saleh JK, Halford DT, Heinl N, Hoskins S, Rothschild L (2013) Polyextremophiles and the constraints for terrestrial habitability. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles: life under multiple forms of stress. Springer, New York, pp 3–59

    Google Scholar 

  • Chandrasekaran M, Sathiyabama M (2014) Production, partial purification and characterization of protease from a phytopathogenic fungi Alternaria solani (E ll. and Mart.) Sorauer. Journal of basic microbiology 54(8):763–774

    Google Scholar 

  • Chernykh A, Myasoedova N, Kolomytseva M, Ferraroni M, Briganti F, Scozzafava A, Golovleva L (2008) Laccase isoforms with unusual properties from the basidiomycete Steccherinum ochraceum strain 1833. J Appl Microbiol 105:2065–2075

    Google Scholar 

  • Coral G, Arican B, Unaldi MN, Guvenmez HK (2002) Some properties of thermostable xylanase from an Aspergillus niger strain. Ann Microbiol 52:299–306

    Google Scholar 

  • Costantinho R, Browns H, Kellyr M (1990) Purification and characterization of an α-glucosidase from a hyperthermophilic archaebacterium Pyrococcus furiosus, exhibiting a temperature optima of 105 °C-115 °C. J Bacteriol 172:3654–3660

    Google Scholar 

  • D’Souza-Ticlo D, Sharma D, Raghukumar C (2009) A thermostable metal- tolerant laccase with bioremediation potential from a marine-derived fungus. Mar Biotechnol 11:725–737

    Google Scholar 

  • Da Silva M, Passarini MRZ, Bonugli RC, Sette LD (2008) Cnidarian-derived filamentous fungi from Brazil: isolation, characterisation and RBBR decolourisation screening. Environ Technol 29:1331–1339

    Google Scholar 

  • De Castro AM, De Carvalho MLDA, SGF L, Pereira N Jr (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37:151

    Google Scholar 

  • Debashish G, Malay S, Barindra S, Joydeep M (2005) Marine enzymes. Adv Biochem Eng Biotechnol 96:189–218

    Google Scholar 

  • Delabona PS, Pirota RDPB, Codima CA, Tremacoldi CR, Rodrigues A, Farinas CS (2013) Effect of initial moisture content on two amazon rainforest Aspergillus strains cultivated on agro-industrial residues: biomass-degrading enzymes production and characterization. Ind Crop Prod 42:236–242

    Google Scholar 

  • Del-Cid A, Ubilla P, Ravanal MC, Medina E, Vaca I, Levicán G, Eyzaguirre J, Chavez R (2014) Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Appl Biochem Biotechnol 172:524–532

    Google Scholar 

  • Devi MK, Rasheedha Banu A, Gnanaprabhal GR, Pradeep BV, Palaniswamy M (2008) Purification, characterization of alkaline protease from native isolates Aspergillus niger its compatibility with commercial detergents. Indian J Sci Technol 1:1–6

    Google Scholar 

  • Divya K, Naga Padma P (2014) Yeast isolates from diverse sources for cold active polygalacturonase and amylase production. Int J Sci Technol Res 3(4):144–148

    Google Scholar 

  • Divya K, Padma PN (2015) Psychrophilic yeast isolates for cold-active lipase production. Int J Sci Prog Res 10:93–97

    Google Scholar 

  • Du Y, Shi P, Huang H, Zhang X, Luo H, Wang Y, Yao B (2013) Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry. Bioresour Technol 130:161–167

    Google Scholar 

  • Duarte AWF, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LCS, Pessoa A, Felipe MG, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035

    Google Scholar 

  • Dutra JCV, Terzi SC, Bevilaqua JV, Damaso MCT, Couri S, Langone MAP (2008) Lipase production in solid state fermentation monitoring biomass growth of Aspergillus niger using digital image processing. Appl Biochem Biotechnol 147:63–75

    Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaption. Nat Rev Microbiol 1:200–208

    Google Scholar 

  • Fenice M, Leuba J, Federici F (1998) Chitinolytic enzyme activity of Penicillium janthinellum P9 in bench-top bioreactor. J Ferment Bioeng 86:620–623

    Google Scholar 

  • Friedrich A, Antranikian G (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl Environ Microbiol 62:2875–2882

    Google Scholar 

  • Gang AA, Piñaga F, Querol A, Vallés S, Ramón D (2001) Cell-wall degrading enzymes in the release of grape aroma precursors. Food Sci Technol Int 7:83–87

    Google Scholar 

  • Gaur LR, Garg SK, Singh SP, Verma J (1993) A comparative study of the production of amylase from Humicola and Paecilomyces species. Bioresour Technol 46:213–216

    Google Scholar 

  • Gautam SP, Gupta AK (1992) Extracellular and mycelial amylases of the thermophilic fungus Malbranchea sulfurea. Mycopathologia 119:77–82

    Google Scholar 

  • Ghatora SK, Chadha BS, Badhan AK, Saini HS, Bhat MK (2006) Identification and characterization of diverse xylanases from thermophilic and thermotolerant fungi. Bioresources 1:18–33

    Google Scholar 

  • Giorgi KI (2017) Cellulases from extremophiles. Curr Trends Biomed Eng Biosci 4:555–640

    Google Scholar 

  • Gomathi D, Muthulakshmi C, Kumar DG, Ravikumar G, Kalaiselvi M, Uma C (2012) Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulase. Asian Pacific J Trop Biomed 2(1):S67–S73

    Google Scholar 

  • Gomes I, Gomes AJ, Gomes DJ, Steiner W (2000) Simultaneous production of high activities of thermostable endoglucanase and β-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus. Appl Microbiol Biotechnol 53:461–468

    Google Scholar 

  • Goncalves DL, Matsushika A, Sales BB, Goshima T, Bon EPS, Stambuk BU (2014) Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzym Microb Technol 63:13–20

    Google Scholar 

  • Griebeler N, Polloni AE, Remonatto D, Arbter F, Vardanega R, Cechet JL (2011) Isolation and screening of lipase producing fungi with hydrolytic activity. Food Bioprocess Technol 4:578–586

    Google Scholar 

  • Gupta RK (2011) Optimization of production and reaction conditions of polygalacturonase from Byssochlamys fulva. Acta Microbiol Immunol Hung 58:339–349

    Google Scholar 

  • Gupta AK, Gautam SP (1993) Production of extracellular amylases by the thermophilic and thermotolerant fungi. Cryptogam Bot 3:303–306

    Google Scholar 

  • Haki GD, Gezmu IB (2012) Detection of thermostable amylases produced by thermophilic fungi isolated from some Ethiopian hyper-thermal springs. Greener J Biol Sci 2:035–039

    Google Scholar 

  • Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable β- glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73:1331–1339

    Google Scholar 

  • Hou YH, Wang TH, Long H, Zhu HY (2006) Novel cold-adaptive Penicillium strain FS010 secreting thermolabile xylanase isolated fromYellow Sea. Acta Biochim Biophys Sin Shanghai 38:142–149

    Google Scholar 

  • Ibrahim MF, Razak MNA, Phang LY, Hassan MA, Abd-Aziz S (2013) Appl Biochem Biotechnol 170:1320

    Google Scholar 

  • Imran M, Anwar Z, Irshad M, Asad MJ, Ashfaq H (2016) Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: A review. Advances in Enzyme Research 4(02):44

    Google Scholar 

  • Indhuja S, Shiburaj S, Pradeep NS, Thankamani V, Abraham TK (2012) Extracellular keratinolytic proteases from an alkalophilic Streptomyces albidoflavus TBG-S13A5: enhanced production and characterization. J Pure Appl Microbiol 6:1599–1607

    Google Scholar 

  • Intriago P (2012) Marine microorganisms: perspectives for getting involved in cellulosic ethanol. AMB Express 2:46

    Google Scholar 

  • Jaeger KE, Reetz MT (1998) Microbial lipases from versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Google Scholar 

  • Joshi C, Khare SK (2012) Induction of xylanase in thermophilic fungi Scytalidium Thermophilum and Sporotrichum Thermophile. Arch Biol Technol 55:21–27

    Google Scholar 

  • Juhasz T, Szengyel Z, Reczey K, Siika-Aho M, Viikari L (2005) Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem 40:3519–3525

    Google Scholar 

  • Jùrgensen S, Vorgias CE, Antranikian G (1997) Cloning, sequencing and expression of an extracellular α-amylase from the hyperthermophilic archeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J Biol Chem 272:16335–16342

    Google Scholar 

  • Kalogeris E, Christakopoulos P, Alexiou A, Vlachou S, Kekos D et al (2003) Production and characterization of cellulolytic enzyme from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochem 38:1099–1104

    Google Scholar 

  • Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger Kk2 from lignocellulosic biomass. Bioresour Technol 91:153–156

    Google Scholar 

  • Kanlayakrit W, Ishimatsu K, Nakao M, Hayashida S (1987) Characteristics of raw-starch-digesting glucoamylase from thermophilic Rhizomucor pusillus. J Ferment Technol 65:379–385

    Google Scholar 

  • Karimi K, Emtiazi G, Taherzadeh MJ (2006) Production of ethanol and mycelial biomass from rice straw hemicellulose hydrolyzate by Mucor indicus. Process Biochem 41:653–658

    Google Scholar 

  • Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilation S. cerevisiae via expression of glucose transporter Sut1. Enzym Microb Technol 43:115–119

    Google Scholar 

  • Kavitha M (2016) Cold active lipases – an update. Front Life Sci 9:226–238

    Google Scholar 

  • Kawamori M, Takayama KI, Takasawa S (1987) Production of cellulases by a thermophilic fungus, Thermoascus aurantiacus A-131. Agric Biol Chem 51:647–654

    Google Scholar 

  • Kazlauskas RJ, Bornscheur UT (1998) Biotransformations with lipases. In: Rehm HJ, Pihler G, Stadler A, Kelly PJW (eds) Biotechnology. Wiley-Vch, New York, pp 37–192

    Google Scholar 

  • Kelly CT, Fogartyw M (1983) Microbial α-Glucosidases. Process Biochem 18:6–12

    Google Scholar 

  • Kelly CT, Moriaritym E, Fogartwy M (1985) Thermostable extracellular cx-amylase and α-Glucosidase of Lipomyces starkeyi. Appl Microbiol Biotechnol 22:352–358

    Google Scholar 

  • Kim IJ, Lee HJ, Choi I-G, Kim KH (2014) Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 98:8469–8480

    Google Scholar 

  • Kour D, Rana KL, Kumar R, Yadav N, Rastegari AA, Yadav AN, Singh K (2019) Gene manipulation and regulation of catabolic genes for biodegradation of biphenyl compounds. In: Singh HB, Gupta VK, Jogaiah S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 1–23. https://doi.org/10.1016/B978-0-444-63503-7.00001-2

    Google Scholar 

  • Kunamneni A, Permaul K, Singh S (2005) Amylase production in solid state fermentation by the thermophilic fungus Thermomyces Lanuginosus. J Biosci Bioeng 100:168–171

    Google Scholar 

  • Kvesitadze GE, Kvesitadze EG, Kvesitadze GI (2012) Industrially important enzymes from microorganisms. Ann Agrarian Sci 10:8–16

    Google Scholar 

  • Kvesitadze G, Urushadze T, Khvedelidze R, Khokhashvili I, Aleksidze T, Burduli T (2013) Stable carbohydrolases of extremophilic mycelia fungi. Bull Georg Natl Acad Sci 7:3

    Google Scholar 

  • Kvesıtadze G, Kutateladze L, Sadunıshvılı T, Khvedelıdze R, Urushadze T, Zakarıashvılı N, Tsıklaurı N, Jobava M (2017) Selection of mycelial fungi producers of stable forms of cellulases, xylanases and laccase. 15th international conference on environmental science and technology Rhodes, Greece

    Google Scholar 

  • Lara-Márquez A, Zavala-Páramo MG, López-Romero E, Cano Camacho H (2011) Biotechnological potential of pectinolytic complexes of fungi. Biotechnol Lett 33:859–688

    Google Scholar 

  • Latimer LN, Lee ME, Medina-Cleghorn D, Kohnz RA, Nomura DK, Dueber JE (2014) Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab Eng 25:20–29

    Google Scholar 

  • Lee H, Suh DB, Hwang JH, Suh HJ (2002) Characterization of keratinolytic metalloprotease from Bacillus sp. SCB-3. Appl Biochem Biotechnol 97:123–133

    Google Scholar 

  • Leuschner C, Antranikian G (1995) Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World J Microbiol Biotechnol 11:95–114

    Google Scholar 

  • Li H, Kim M-J, Kim S-J (2009) Cost-cutting of nitrogen source for economical production of cellulolytic enzymes by Trichoderma inhamatum KSJ1. Korean J Chem Eng 26:1070–1074

    Google Scholar 

  • Li D-C, Li A-N, Papageorgiou AC (2011) Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzym Res 2011:308730–308739

    Google Scholar 

  • Long TM, Su Y-K, Headman J, Higbee A, Willis LB, Jeffries TW (2012) Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum. Appl Environ Microbiol 78:5492–5500

    Google Scholar 

  • Luo H, Li J, Yang J, Wang H, Yang Y, Huang H, Shi P, Yuan T, Fan Y, Yao B (2009) A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles 13:849–857

    Google Scholar 

  • Luo H, Wang K, Huang H, Shi P, Yang P, Yao B (2012) Gene cloning, expression and biochemical characterization of an alkali-tolerant β-mannanase from Humicola insolens Y1. J Ind Microbiol Biotechnol 39:547–555

    Google Scholar 

  • Macedo GA, Lozano MMS, Pastore GM (2003) Enzymatic synthesis of short chain citronellyl esters by a new lipase from Rhizopus sp. J Biotechnol 6:72–75

    Google Scholar 

  • Macris BJ, Galiotou-Panayotou M (1986) Enhanced cellobiohydrolase production from Aspergillus ustus and Trichoderma harzianum. Enzym Microb Technol 8:141–144

    Google Scholar 

  • Madan M, Dhillon S, Singh R (2002) Production of alkaline protease by a UV mutant of Bacillus polymyxa. Indian J Microbiol 42:155–159

    Google Scholar 

  • Maharana AK, Singh SM (2018) Cold active lipases produced by Cryptococcus Sp. Y-32 and Rhodococcus erythropolis N149 isolated from Nella lake, Antarctica. Int J Curr Microbiol App Sci 7:1910–1926

    Google Scholar 

  • Maheshwari R, Kamalam PT (1985) Isolation and culture of a thermophilic fungus, Melanocarpus albomyces and factors influencing the production and activity of xylanase. J Gen Microbiol 131:3017–3027

    Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat M (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Google Scholar 

  • Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B (2009) An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Biochimie 91:1187–1196

    Google Scholar 

  • Manivannan S, Kathiresan K (2007) Alkaline protease production by Penicillium fellutanum, isolated from mangroove sediments. Int J Biol Chem 1:98–103

    Google Scholar 

  • Masse L, Kennedy KJ, Chou SP (2001) The effect of an enzymatic pretreatment on the hydrolysis and size reduction of fat particles in slaughterhouse wastewater. J Chem Technol Biotechnol 76:629–635

    Google Scholar 

  • Matsumae H, Furui M, Shibatani T (1993) Lipase catalysed asymmetric hydrolysis of 3-phenylglycidic acid ester, the key intermediate in the synthesis of ditiazem hydrochoride. J Ferment Bioeng 75:93–98

    Google Scholar 

  • Merín MG, Mendoza LM, Farías ME, De Ambrosini VIM (2011) Isolation and selection of yeasts from wine grape ecosystem secreting cold-active pectinolytic activity. International journal of food microbiology 147(2):144–148

    Google Scholar 

  • Mishra RS (1994) Amylases from a thermophilic fungus Thermomyces lanuginosus IISc 91: their purification and properties. Ph.D. thesis. I.I.Sc. Bengaluru

    Google Scholar 

  • Mishra RS, Maheshwari R (1996) Amylases of the thermophilic fungus Thermomyces lanuginosus: their purification, properties, action on starch and response to heat. J Biosci 21:653–672

    Google Scholar 

  • Monte JR, Carvalho W, Milagres AMF (2010) Use of a mixture of thermophilic enzymes produced by the fungus Thermoascus aurantiacus to enhance the enzymatic hydrolysis of the sugarcane bagasse cellulose. Am J Agric Biol Sci 5:468–476

    Google Scholar 

  • Moretti MMS, Bocchini-Martins DA, Da Silva R, Rodrigues A, Sette L, Gomes E (2012) Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Braz J Microbiol 2012:1062–1071

    Google Scholar 

  • Mouchacca J (1997) Thermophilic fungi: biodiversity and taxonomic status. Cryptogam Mycol 18:19–69

    Google Scholar 

  • Murray PM, Moane S, Collins C, Beletskaya T, Thomas OP, Duarte AWF et al (2013) Sustainable production of biologically active molecules of marine based origin. J Biotechnol 30:839–850

    Google Scholar 

  • Nairn S, Jarnil A (2007) Production of endoglucanase from a thermophilic fungus. Pak J Agri Sci 44:1

    Google Scholar 

  • Niehaus á C, Bertoldo á M, KaÈhler á G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    Google Scholar 

  • Nigam P, Prabhu KA (1986) The effects of some added carbohydrates on cellulases and ligninase and decomposition of bagasse. Agric Wastes 17:293–299

    Google Scholar 

  • Nitin KS, Vivek KT, Santosh KM (2017) The production of xylanase enzyme (E.C. number = 3.2.1.8) using solid substrate fermentation. Biotechnol Ind J 13:145

    Google Scholar 

  • Nizamudeen S, Bajaj BK (2009) A novel thermo-alkalitolerant endoglucanase production using cost-effective agricultural residues as substrates by a newly isolated Bacillus sp. NZ Food Technol Biotechnol 47:435–440

    Google Scholar 

  • Okamoto K, Sugita Y, Nishikori N, Nitta Y, Yanase H (2011) Characterization of two acidic β glucosidases and ethanol fermentation in the brown rot fungus Fomitopsis palustris. Enzym Microb Technol 48:359–364

    Google Scholar 

  • Okamoto K, Kanawaku R, Masumoto M, Yanase H (2012) Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus. Enzym Microb Technol 50:96–100

    Google Scholar 

  • Olagoke OA (2014) Amylase activities of some thermophilic fungi isolated from municipal solid wastes and palm-kernel stack. Am J Microbiol Biotechnol 1:64–70

    Google Scholar 

  • Ortiz GE, Noseda DG, Mora MCP, Recupero MN, Blasco M, Albertó E (2016) A comparative study of new Aspergillus strains for proteolytic enzymes production by solid state fermentation. Enzym Res 2016:3016149

    Google Scholar 

  • Pabulo HR (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2:1602–1623

    Google Scholar 

  • Pabulo HR (2013) Extremophiles and extreme environments. Life 3:482–485

    Google Scholar 

  • Pan X, Tu T, Wang L, Luo H, Ma R, Shi P, Meng K, Yao B (2014) A novel low-temperature active pectin methylesterase from Penicillium chrysogenum F46 with high efficiency in fruit firming. Food Chem 162:229–234

    Google Scholar 

  • Parry NJ, Beever DE, Owen E, Vandenberghe I, Van Beeumen J, Bhat MK (2001) Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochem J 353:117–127

    Google Scholar 

  • Passarini MRZ, Rodrigues MVN, Da Silva M, Sette LD (2011) Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull 62:364–370

    Google Scholar 

  • Pereira JDe C, Marques NP, Rodrigues A, de Oliveira TB, Boscolo M, da Silva R, Gomes E, Martins DAB (2015) Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol 118:928–939

    Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Google Scholar 

  • Poveda G, Gil-Duran C, Vaca I, Levicán G, Chávez R (2018) Cold-active pectinolytic activity produced by filamentous fungi associated with Antarctic marine sponges. Biol Res 51:28

    Google Scholar 

  • Raghukumar C, Raghukumar S (1998) Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat Microb Ecol 15:153–163

    Google Scholar 

  • Raghukumar C, Raghukumar S, Chinnaraj A, Chandramohan D, Dsouza T, Reddy CA (1994) Laccase and other lignocelluloses modifying enzymes of marine fungi isolated from the coast of India. Bot Mar 37:515–523

    Google Scholar 

  • Raghukumar C, Muraleedharan U, Gaud VR, Mishra R (2004a) Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat. Enzym Microb Technol 35:197–202

    Google Scholar 

  • Raghukumar C, Muraleedharan U, Gaud VR, Mishra R (2004b) Xylanases of marine fungi of potential use for biobleaching of paper pulp. J Ind Microbiol Biotechnol 31:433–441

    Google Scholar 

  • Raghukumar C, Shailaja MS, Parameswaran PS, Singh SK (2006) Removal of polycyclic aromatic hydrocarbons from aqueous media by the marine fungus NIOCC#312: involvement of lignin-degrading enzymes and exopolysaccharides. Indian J Mar Sci 35:373–379

    Google Scholar 

  • Ramanjaneyulu G, Reddy GPK, Kumar KD, Reddy BR (2015) Isolation and screening of xylanase producing fungi from forest soils. Int J Curr Microbiol App Sci 4:586–591

    Google Scholar 

  • Rao MB, Aparna M, Tanksale M, Ghatge S, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    Google Scholar 

  • Reynolds AG, Knox A, Di Profio F (2018) Evaluation of macerating pectinase enzyme activity under various temperature, pH and ethanol regimes. Beverages 4:10

    Google Scholar 

  • Robledo A, Aguilar CN, Belmares-Cerda RE, Flores-Gallegos AC, Contreras-Esquivel JC, Montañez JC, Mussatto SI (2016) Production of thermostable xylanase by thermophilic fungal strains isolated from maize silage. Cyta J Food 14:302–308

    Google Scholar 

  • Romaneli RA, Houston CW, Barnett SM (1975) Studies on thermophilic cellulolytic fungi. Appl Microbiol 30:276–281

    Google Scholar 

  • Rowe HD (2001) Biotechnology in the textile/clothing industry: a review. J Consum Stud Home Econ 23:53–61

    Google Scholar 

  • Rubin B, Dennis EA (1997) Lipases: part a. biotechnology methods in enzymology, vol 284. Academic Press, New York, pp 1–408

    Google Scholar 

  • RuÈ digger A, Jùrgensen PL, Antranikian G (1995) Isolation and characterization of a heat stable pullulanase from the hyperthermophilic archeon Pyrococcus woesei after cloning and expression of its gene in Escherichia coli. Appl Environ Microbiol 61:567–575

    Google Scholar 

  • Sahay S, Hamid B, Singh P, Ranjan K, Chauhan D, Rana RS, Chaurse VK (2013) Evaluation of pectinolytic activities for oenological uses from psychrotrophic yeasts. Lett Appl Microbiol 57:115–121

    Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3. Biotech 7:1–11

    Google Scholar 

  • Sandhya C, Sumantha A, Szakacs G, Pandey A (2005) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem 40:2689–2694

    Google Scholar 

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Google Scholar 

  • Schuerg T, Gabriel R, Baecker N, Baker SE, Singer SW (2017) Thermoascus aurantiacus is an intriguing host for the industrial production of cellulases. Curr Biotechnol 6:89–97

    Google Scholar 

  • Sette LD, Bonugli-Santos RC (2013) Ligninolytic enzymes from marine- derived fungi: production and applications. In: Trincone A (ed) Marine enzymes for biocatalysis: sources biocatalytic characteristics and bioprocesses of marine enzymes. Woodhead Publishing Limited, Cambridge, pp 403–427

    Google Scholar 

  • Shafer T, Duffer F, Borchert T (2000) In: Proceedings of the third congress on extremophiles, Hamburg, Germany, pp 306–307

    Google Scholar 

  • Sharma R, Chistib Y, Banerjeea UC (2001) Production, purification, characterization and applications of lipases. Biotechnol Adv 19:627–662

    Google Scholar 

  • Shukla L, Suman A, Yadav AN, Verma P, Saxena AK (2016) Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment. J App Biol Biotech 4:30–37

    Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First, high quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54. https://doi.org/10.1186/s40793-016-0176-4

    Google Scholar 

  • Singhania S, Ansari R, Neekhra N, Saini A (2018) Isolation, identification and screening of alkaline protease from thermophilic fungal species of Raipur. Int J Life Sci Scienti Res 4:1627–1633

    Google Scholar 

  • Strauss MLA, Jolly NP, Lambrechts MG, Van Rensburg P (2001) Screening for the production of extracellular hydrolytic enzymes by non‐Saccharomyces wine yeasts. Journal of applied microbiology 91(1):182–190

    Google Scholar 

  • Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42

    Google Scholar 

  • Takamoto T, Shirasaka H, Uyama H, Kobayashi S (2001) Lipase-catalyzed hydrolytic degradation of polyurethane in organic solvent. Chem Lett 6:492–493

    Google Scholar 

  • Tong CC, Cole ALJ (1982) Cellulase production by the thermophilic fungus, Thermoascus aurantiacus. Pertanika 5:255–262

    Google Scholar 

  • Torre CLD, Kadowaki MK (2017) Thermostable xylanase from thermophilic fungi: biochemical properties and industrial applications. Afr J Microbiol Res 11:28–37

    Google Scholar 

  • Tubaki KT, Ito T, Matsuda Y (1974) Aquatic sediment as a habitat of thermophilic fungi. Annals Microbiol 24:199–207

    Google Scholar 

  • Unal A (2015) Production of α-amylase from some thermophilic Aspergillus species and optimization of its culture medium and enzyme activity. Afr J Biotechnol 14:3179–3183

    Google Scholar 

  • Velmurugan N, Lee YS (2012) Enzymes from marine fungi: current research and future prospects. In: Jones EBG (ed) Marine fungi and fungal-like organisms (Marine and Freshwater Botany). Walter de Gruyter, Berlin, pp 441–474

    Google Scholar 

  • Velmurugan N, Kalpana D, Han JH, Cha HJ, Lee YS (2011) A novel low temperature chitinase from the marine fungus Plectosphaerella sp strain MF-1. Bot Mar 54:75–81

    Google Scholar 

  • Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika AM (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–145

    Google Scholar 

  • Wang Q, Hou Y, Shi Y, Han X, Chen Q, Hu Z, Liu Y, Li Y (2012) Cloning, expression, purification, and characterization of glutaredoxin from Antarctic Sea – ice bacterium Pseudoalteromonas sp. AN178. Bio Med Res Int 2014:246871

    Google Scholar 

  • Wojtczak G, Breuil C, Yamada J, Saddler JN (1987) A comparison of the thermostability of cellulases from various thermophilic fungi. Appl Microbiol Biotechnol 27:82–87

    Google Scholar 

  • Wu Y-R, He T-T, Lun J-S, Maskaoui K, Huang T-W, Hu Z (2009) Removal of benzoapyrene by a fungus Aspergillus sp BAP14. World J Microbiol Biotechnol 25:1395–1401

    Google Scholar 

  • Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D. Thesis, IARI, New Delhi/BIT, Ranchi, p 234, https://doi.org/10.13140/RG.2.1.2948.1283/2

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016a) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016b) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017b) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4

    Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Saxena AK (2017c) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO 01:48–54

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Google Scholar 

  • Yu EKC, Tan LUL, Chan MK-H, Deschatelets L, Saddler JN (1987) Production of thermostable xylanase by a thermophilic fungus, Thermoascus aurantiacus. Enzym Microb Technol 9:16–24

    Google Scholar 

  • Zanphorlina LM, Cabralb H, Arantesb E, Assisc D, Julianoc L, Julianoc MA, Da-Silvaa R, Gomesa E, Bonilla-Rodrigueza GO (2011) Purification and characterization of a new alkaline serine protease from the thermophilic fungus Myceliophthora sp. Process Biochem 46:2137–2143

    Google Scholar 

  • Zhang C, Kim SK (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934

    Google Scholar 

  • Zoecklein BW, Marcy JE, Williams JM, Jasinsky Y (1997) Effect of native yeasts and selected strains of Saccharomyces cerevisiae on glycosyl, glucose potential, olatile terpenes and selected aglycones of white riesling (Vitis vinifera) wines. J Food Compos Anal 10:55–65

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Gogate Jogalekar College, Ratnagiri, Maharashtra; Arts, Commerce and Science College, Lanja, Maharashtra; and Krishna University, Machilipatnam, AP, India.

Conflict of Interest

We declare that we do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berde, C.P., Berde, V.B., Mohana Sheela, G., Veerabramhachari, P. (2019). Discovery of New Extremophilic Enzymes from Diverse Fungal Communities. In: Yadav, A., Mishra, S., Singh, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_16

Download citation

Publish with us

Policies and ethics