Skip to main content

Abstract

The design of linear continuous- and discrete-time state feedback controllers is well documented in control engineering literature; see, for example, Franklin et al. (1990), Ogata (1995), Sinha (2007), and Chen (2012). The authors of this monograph have recently developed new algorithms for the design of two- and three-stage feedback controllers for both linear discrete- and continuous-time dynamic systems (Radisavljevic-Gajic and Rose 2014; Radisavljevic-Gajic 2015a, b; Radisavljevic-Gajic et al. 2015, 2017) that have been efficiently applied to two- and three-time-scale models of fuel cells (Radisavljevic-Gajic and Rose 2014; Radisavljevic-Gajic et al. 2015, 2017; Radisavljevic-Gajic and Milanovic 2016; Milanovic et al. 2017; Milanovic and Radisavljevic-Gajic 2018). In general, the results of these new multistage and multi-time-scale feedback controller design algorithms are applicable under mild conditions to almost all linear continuous- and discrete-time time-invariant linear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbir F (2005) PEM fuel cells: theory and practice. Elsevier, Amsterdam

    Google Scholar 

  • Barelli L, Bidini G, Gallorini F, Ottaviano A (2012) Dynamic analysis of PEMFC-based CHP systems for domestic application. Appl Energy 91:13–28

    Article  Google Scholar 

  • Baruh H, Choe K (1990) Sensor placement in structural control. J Guid Dyn Control 13:524–533

    Article  MATH  Google Scholar 

  • Bhargav A, Lyubovsky M, Dixit M (2014) Managing fuel variabality in LPG-based PEM fuel cell systems: — I: theormodinamic simulations. Int J Hydrogen Energy 39:17231–17239

    Article  Google Scholar 

  • Chen T (2012) Linear system theory and design. Oxford University Press, Oxford, UK

    Google Scholar 

  • Chiu L, Diong B, Gemmen R (2004) An improved small signal model of the dynamic behavior of PEM fuel cells. IEEE Trans Ind Appl 40:970–977

    Article  Google Scholar 

  • Cronin J (2008) Mathematical aspects of Hodgkin-Huxley neural theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Daud W, Rosli R, Majlan E, Hamid S, Mohamed R, Husaini T (2017) PEM fuel cell system control: a review. Renew Energy 113:620–638

    Article  Google Scholar 

  • Dimitriev M, Kurina G (2006) Singular perturbations in control systems. Autom Remote Control 67:1–43

    Article  MathSciNet  Google Scholar 

  • Eikerling M, Kulikovsky A (2014) Polymer electrolyte fuel cells: physical principles of materials and operation. CRC Press, Boca Raton

    Book  Google Scholar 

  • El-Sharkh M, Rahman A, Alam M, Byrne P, Sakla A, Thomas T (2004) A dynamic model for stand-alone PEM fuel cell power plant for residential applications. J Power Sources 138:199–204

    Article  Google Scholar 

  • Esteban S, Gordillo F, Aracil J (2013) Three-time scale singular perturbation control and stability analysis for an autonomous helicopter on a platform. Int J Robust Nonlinear Control 23:1360–1392

    Article  MathSciNet  MATH  Google Scholar 

  • Franklin G, Powel J, Workman M (1990) Digital control of dynamic systems. Addison Wesley, Reading

    Google Scholar 

  • Fuhrmann J, Haasdonk B, Holzbecher E, Ohlberger M (2008) Modeling and simulation of PEM fuel cells. ASME J Fuel Cell Sci Technol 5:020301-1

    Google Scholar 

  • Gajic Z, Lim M-T (2001) Optimal control of singularly perturbed linear systems and applications. Marcel Dekker, New York

    Book  MATH  Google Scholar 

  • Gawronski W (1994) A balanced LQG compensator for flexible structures. Automatica 30:1555–1564

    Article  MathSciNet  MATH  Google Scholar 

  • Gawronski W (1998) Dynamics and control of structures: a modal approach. Springer, New York

    Book  MATH  Google Scholar 

  • Gawronski W, Juang J-N (1990) Model reduction for flexible structures. Control Dyn Syst 36:143–222

    Article  MATH  Google Scholar 

  • Gemmen R (2003) Analysis for the effect of inverter ripple current on fuel cell operating condition. J Fluid Eng 124:576–585

    Article  Google Scholar 

  • Gou B, Na W, Diong B (2010) Fuel cells: modeling, control, and applications. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Haddad A, Mannah M, Bazzi H (2015) Nonlinear time-variant model of the PEM type fuel cell for automotive applications. Simul Model Pract Theory 51:31–44

    Article  Google Scholar 

  • Han J, Yu S, Yi S (2017) Advanced thermal management automotive fuel cells using a model reference adaptive control algorithm. Int J Hydrogen Energy 42:4328–4341

    Article  Google Scholar 

  • Hong L, Chen J, Liu Z, Huang L, Wu Z (2017) A nonlinear control strategy for fuel cell delivery in PEM fuel cells considering nitrogen permeation. Int J Hydrogen Energy 42:1565–1576

    Article  Google Scholar 

  • Jalics J, Krupa M, Rotstein H (2010) Mixed-mode oscillations in a three time-scale system of ODEs motivated by a neuronal model. Dyn Syst Int J 25:445–482

    Article  MathSciNet  MATH  Google Scholar 

  • Jiao J (2014) Maximum power point tracking of fuel cell power system using fuzzy logic control. Electrotehn Electron Automat 62:45–52

    Google Scholar 

  • Kokotovic P, Khalil H, O’Reilly J (1999) Singular perturbation methods in control: analysis and design. Academic Press, Orlando

    Book  MATH  Google Scholar 

  • Kuehn C (2015) Multiple time scale dynamics. Springer, Cham

    Book  MATH  Google Scholar 

  • Kummrow A, Emde M, Baltsuka A, Pshebichnikov M, Wiersma D (1999) Z Phys Chem Int J Res Phys Chem Chem Phys 212:153–159

    Google Scholar 

  • Larminie J, Dicks A (2001) Fuel cell systems explained. Wiley, New York

    Google Scholar 

  • Lee C, Othmer G (2010) A multi-time-scale analysis of chemical reaction networks: I. Deterministic systems. J Math Biol 60:387–450

    Article  MathSciNet  MATH  Google Scholar 

  • Li D, Li C, Gao Z, Jin Q (2015a) On active disturbance rejection of the proton exchange membrane fuel cells. J Power Sources 283:452–463

    Article  Google Scholar 

  • Li Y, Zhao X, Tao S, Li Q, Chen W (2015b) Experimental study on anode and cathode pressure difference control and effects in a proton exchange membrane fuel cell system. Energ Technol 3:946–954

    Article  Google Scholar 

  • Liu H, Sun F, He K (2003) Survey of singularly perturbed control systems: theory and applications. Control Theory Appl 20:1–7

    Google Scholar 

  • Majlan E, Rohendi D, Daud W, Husaini T, Haque M (2018) Electrode for proton exchange membrane fuel cells: a review. Renew Sustain Energy Rev 89:117–134

    Article  Google Scholar 

  • Matraji I, Laghrouche S, Wack M (2012) Pressure control of a PEM fuel cell via second order sliding mode. Int J Hydrogen Energy 37:16104–16116

    Article  Google Scholar 

  • Matraji I, Laghtouche S, Jemei S, Wack M (2013) Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding model. Appl Energy 104:945–957

    Article  Google Scholar 

  • Matraji I, Ahmed F, Laghrouche S, Wack M (2015) Comparison of robust and adaptive second order sliding mode control in PEMFC air-feed systems. Int J Hydrogen Energy 40:9491–9504

    Article  Google Scholar 

  • Meirovich L, Baruh H (1983) On the problem of observation spillover in self-adjoint distributed parameter systems. J Optim Theory Appl 39:269–291

    Article  MathSciNet  MATH  Google Scholar 

  • Milanovic M, Radisavljevic-Gajic V (2018) Optimal linear-quadratic integral feedback controller design with disturbance rejection for a proton exchange membrane fuel cell. In: ASME dynamic systems and control conference, Atlanta

    Google Scholar 

  • Milanovic M, Rose P, Radisavljevic-Gajic V, Clayton G (2017) Five state analytical model proton exchange membrane fuel cell. In: ASME dynamic systems and control conference, Tysons Corner

    Google Scholar 

  • Mitchell W, Bowers B, Garnier C, Boudjema F (2006) Dynamic behavior of gasoline fuel cell electric vehicles. J Power Sources 154:489–496

    Article  Google Scholar 

  • Munje R, Patre B, Tiwari A (2014) Periodic output feedback for spatial control of AHWR: a three-time-scale approach. IEEE Trans Nucl Sci 61:2373–2382

    Article  Google Scholar 

  • Na K, Gou B (2008) Feedback linearization based nonlinear control for PEM fuel cells. IEEE Trans Energy Convers 23:179–190

    Article  Google Scholar 

  • Naghidokht A, Elahi A, Ghoranneviss M (2016) Feedback controller design for ignition of deuterium-tritium in NSTX tokamak. Int J Hydrogen Energy 41:15272–15276

    Article  Google Scholar 

  • Naidu DS, Calise A (2001) Singular perturbations and time scales in guidance and control of aerospace systems: survey. AIAA J Guid Control Dyn 24:1057–1078

    Article  Google Scholar 

  • Nehrir M, Wang C (2009) Modeling and control of fuel cells: distributed generation applications. Wiley, Hoboken

    Book  Google Scholar 

  • Ogata K (1995) Discrete-time control systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Pasqualetti F, Dorfler F, Bullo F (2015) Control theoretic methods for cyberphysical security. IEEE Control Syst Mag 35:110–127

    Article  Google Scholar 

  • Pukrushpan J, Stefanopoulou A, Peng H (2004a) Control of fuel cell power systems: principles, modeling and analysis and feedback design. Springer, London

    Book  MATH  Google Scholar 

  • Pukrushpan J, Peng H, Stefanopoulou A (2004b) Control oriented modeling and analysis for automotive fuel cell systems. Trans ASME J Dyn Syst Meas Control 126:14–25

    Article  Google Scholar 

  • Radisavljevic V (2011) On controllability and system constraints of a linear models of proton exchange membrane and solid oxide fuel cells. J Power Sources 196:8549–8552

    Article  Google Scholar 

  • Radisavljevic-Gajic V (2015a) A simplified two-stage design of linear discrete-time feedback controllers. ASME J Dyn Syst Meas Control 138:014506-1–014506-7

    Google Scholar 

  • Radisavljevic-Gajic V (2015b) Two-stage feedback design for a class of linear discrete-time systems with slow and fast variables. ASME J Dyn Syst Meas Control 138:086502–086507

    Google Scholar 

  • Radisavljevic-Gajic V, Graham K (2017) System analysis of a nonlinear proton exchange membrane fuel cell mathematical model. In: ASME dynamic systems and control conference, Tysons Corner

    Google Scholar 

  • Radisavljevic-Gajic V, Milanovic M (2016) Three-stage feedback controller design with application to a three-time scale fuel cell system. In: ASME dynamic systems and control conference, Minneapolis

    Google Scholar 

  • Radisavljevic-Gajic V, Rose P (2014) A new two stage design of feedback controllers for a hydrogen gas reformer. Int J Hydrogen Energy 39:11738–11748

    Article  Google Scholar 

  • Radisavljevic-Gajic V, Rose P (2015) Optimal observer driven controller with disturbance rejection for a natural gas hydrogen reformer. In: ASME dynamic systems and control conference, 28–30 Oct, Columbus

    Google Scholar 

  • Radisavljevic-Gajic V, Rose P, Clayton G (2015) Two-stage design of linear feedback controllers for proton exchange membrane fuel cells. In: ASME dynamic systems and control conference, Columbus, doi: https://doi.org/10.1115/DSCC2015-9973

  • Radisavljevic-Gajic V, Milanovic M, Clayton G (2017) Three-stage feedback controller design with applications to three time-scale control systems. ASME J Dyn Syst Meas Control 139:104502-1–104502-10

    Article  Google Scholar 

  • Reddy B, Samuel P (2017) Technology advancements and trends in development of proton exchange membrane fuel cell hybrid electric vehicles in India: a review. J Green Eng 7:361–384

    Article  Google Scholar 

  • Rojas A, Lopez G, Gomez-Aguilar J, Alvarado V, Torres C (2017) Control of the air supply system in a PEMFC with balance of plant simulation. Sustainability 9:1–23

    Google Scholar 

  • Samuelsen S (2017) The automotive future belongs to fuel cells: range, adaptability, and refueling time will ultimately put hydrogen fuel cells ahead of batteries. IEEE Spectr 54:38–43

    Article  Google Scholar 

  • Sankar K, Jana A (2018a) Dynamics and estimator based nonlinear control of a PEM fuel cell. IEEE Trans Control Syst Technol 26:1124–1131

    Article  Google Scholar 

  • Sankar K, Jana A (2018b) Nonlinear multivariable sliding mode control of a reversible PEM fuel cell integrated systems. Energ Conver Manage 171:541–565

    Article  Google Scholar 

  • Shimjith S, Tiwari A, Bandyopadhyay B (2011a) Design of fast output sampling controller for three-time-scale systems: application to spatial control of advanced heavy water reactor. IEEE Trans Nucl Sci 58:3305–3316

    Article  Google Scholar 

  • Shimjith S, Tiwari A, Bandyopadhyay B (2011b) A three-time-scale approach for design of linear state regulators for spatial control of advanced heavy water reactor. IEEE Trans Nucl Sci 58:1264–1276

    Article  Google Scholar 

  • Sinha A (2007) Linear systems: optimal and robust control. Francis & Taylor, Boca Raton

    Book  MATH  Google Scholar 

  • Tong S, Fang J, Zhang Y (2017) Output tracking control of a hydrogen-air PEM fuel cell. IEEE/CAA J Automat Sinica 4:273–279

    Article  MathSciNet  Google Scholar 

  • Umbria F, Aracil J, Gordillo F (2014) Three-time-scale singular perturbation stability analysis of three-phase power converters. Asian J Control 16:1361–1372

    Article  MATH  Google Scholar 

  • Wang F-C, Guo Y-F (2015) Robustness analysis of PEMFC systems on the production line. Int J Hydrogen Energy 40:1959–1966

    Article  Google Scholar 

  • Wang F-C, Peng C-H (2014) The development of an exchangeable PEM power module for electric vehicles. Int J Hydrogen Energy 39:3855–3867

    Article  Google Scholar 

  • Wang Y, Chen K, Mishler J, Cho S, Adroher X (2011) A review of polymer electrolyte fuel cells: technology, applications and needs on fundamental research. Appl Energy 88:981–1007

    Article  Google Scholar 

  • Wang F-C, Kuo P-C, Chen H-J (2013) Control design and power management of stationary PEMFC hybrid power system. Int J Hydrogen Energy 38:5845–5856

    Article  Google Scholar 

  • Wedig W (2014) Multi-time scale dynamics of road vehicles. Probab Eng Mech 37:180–184

    Article  Google Scholar 

  • Wu X, Zhou B (2016) Fault tolerance control for proton exchange membrane fuel cell systems. J Power Sources 324:804–829

    Article  Google Scholar 

  • Zenith F, Skogestad S (2009) Control of mass and energy dynamics of polybenzimidazole membrane fuel cells. J Process Control 19:15–432

    Article  Google Scholar 

  • Zhang Y, Naidu DS, Cai C, Zou Y (2014) Singular perturbation and time scales in control theories and applications: an overview 2002-2012. Int J Inf SystSci 9:1–36

    Google Scholar 

  • Zhou D, Al-Dura A, Gao F, Ravey A, Matraji I, Simoes M (2017) Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach. J Power Sources 366:278–291

    Article  Google Scholar 

  • Zhou D, Al-Dura A, Matraji I, Ravey A, Gao F (2018) Online energy management strategy of fuel cell hybrid electric vehicles: a fractional-order extremum seeking method. IEEE Trans Ind Electron 65:6787–6799

    Article  Google Scholar 

  • Zhu Q, Basar T (2015) Game-theoretic methods for robustness, security, and resilience of cyberphysical control systems. IEEE Control Syst Mag 35:46–65

    Article  Google Scholar 

  • zur Megede D (2002) Fuel cell processors for fuel cell vehicles. J Power Sources 106:35–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radisavljević-Gajić, V., Milanović, M., Rose, P. (2019). Introduction. In: Multi-Stage and Multi-Time Scale Feedback Control of Linear Systems with Applications to Fuel Cells. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10389-7_1

Download citation

Publish with us

Policies and ethics