Skip to main content

Borided Materials

  • Chapter
  • First Online:
  • 517 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

All the materials, subjected to boronizing using different techniques, were indicated in this chapter. They were classified into two main groups: iron alloys and non-ferrous materials. The preliminary analysis of the produced microstructure was presented. The most popular materials with boride layers were marked with the boxes drawn in a broken line. Boride coatings could be produced on any metal alloy under certain conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anthymidis KG, Stergioudis G, Roussos D, Zinoviadis P, Tsipas DN (2002) Boriding of ferrous and non-ferrous metals in fuidised bed reactor. Surf Eng 18(4):255–259

    Article  CAS  Google Scholar 

  • Ataibis V, Taktak S (2015) Characteristics and growth kinetics of plasma paste borided Cp–Ti and Ti6Al4 V alloy. Surf Coat Technol 279:65–71

    Article  CAS  Google Scholar 

  • Atar E, Kayali ES, Cimenoglu H (2008) Characteristics and wear performance of borided Ti6Al4 V alloy. Surf Coat Technol 202:4583–4590

    Article  CAS  Google Scholar 

  • Azouani O, Keddam M, Allaoui O, Sehisseh A (2017) Characterization of boride coatings on a ductile cast iron. Prot Met Phys Chem Surf 53(2):306–311

    Article  CAS  Google Scholar 

  • Çalik A, Karakaş MS, Ucar N, Ünüvar F (2014) Boriding kinetics of pure cobalt. Kovove Mat 52(2):107–112

    Google Scholar 

  • Campos-Silva I, Ortiz-Domínguez M, Keddam M, López-Perrusquia N, Carmona-Vargas A, Elías-Espinosa M (2009) Kinetics of the formation of Fe2B layers in gray cast iron: effects of boron concentration and boride incubation time. Appl Surf Sci 255:9290–9295

    Article  CAS  Google Scholar 

  • Campos-Silva I, Ortiz-Domínguez M, Lopez-Perrusquia N, Meneses-Amador A, Escobar-Galindo R, Martínez-Trinidad J (2010) Characterization of AISI 4140 borided steels. Appl Surf Sci 256:2372–2379

    Article  CAS  Google Scholar 

  • Campos-Silva I, Martínez-Trinidad J, Doñu-Ruíz MA, Rodríguez-Castro G, Hernández-Sánchez E, Bravo-Bárcenas O (2011) Interfacial indentation test of FeB/Fe2B coatings. Surf Coat Technol 206:1809–1815

    Article  CAS  Google Scholar 

  • Campos-Silva I, Flores-Jiménez M, Rodríguez-Castro G, Hernández-Sánchez E, Martínez-Trinidad J, Tadeo-Rosas R (2013a) Improved fracture toughness of boride coating developed with a diffusion annealing process. Surf Coat Technol 237:429–439

    Article  CAS  Google Scholar 

  • Campos-Silva I, Hernández-Sánchez E, Rodríguez-Castro G, Cimenoglu H, Nava-Sánchez JL, Meneses-Amador A, Carrera-Espinoza R (2013b) A study of indentation for mechanical characterization of the Fe2B layer. Surf Coat Technol 232:173–181

    Article  CAS  Google Scholar 

  • Campos-Silva I, Bravo-Bárcenas D, Meneses-Amador A, Ortiz-Domínguez M, Cimenoglu H, Figueroa-López U, Andraca-Adame J (2013c) Growth kinetics and mechanical properties of boride layers formed at the surface of the ASTM F-75 biomedical alloy. Surf Coat Technol 237:402–414

    Article  CAS  Google Scholar 

  • Campos-Silva I, Bravo-Bárcenas D, Cimenoglu H, Figueroa-López U, Flores-Jiménez M, Meydanoglu O (2014) The boriding process in CoCrMo alloy: Fracture toughness in cobalt boride coatings. Surf Coat Technol 260:362–368

    Article  CAS  Google Scholar 

  • Chang FM, Wu ZZ, Lin YF, Ch Kao L, Wu CT, JangJian SK, Chen YN, Lo KY (2018) Damage and annealing recovery of boron-implanted ultra-shallow junction: The correlation between beam current and surface configuration. Appl Surf Sci 433:160–165

    Article  CAS  Google Scholar 

  • Chen H, Xu C, Chen J, Zhao H, Zhang L, Wang Z (2008) Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear. Wear 264:487–493

    Article  CAS  Google Scholar 

  • Dikici B, Ozdemir I (2012) FeB and FeB/h-BN based anti-corrosive composite coatings for aluminium alloys. Anti-Corros Methods Mater 59(5):246–254

    Article  CAS  Google Scholar 

  • Filip R, Sieniawski J, Pleszakov E (2006) Formation of surface layers on Ti–6Al–4 V titanium alloy by laser alloying. Surf Eng 22(1):53–57

    Article  CAS  Google Scholar 

  • Hemmati I, Ocelík V, De Hosson JThM (2013) Toughening mechanism for Ni–Cr–B–Si–C laser deposited coatings. Mater Sci Eng, A 582:305–315

    Article  CAS  Google Scholar 

  • Hernández-Sanchez E, Rodriguez-Castro G, Meneses-Amador A, Bravo-Bárcenas D, Arzate-Vazquez I, Martínez-Gutiérrez H, Romero-Romo M, Campos-Silva I (2013) Effect of the anisotropic growth on the fracture toughness measurements obtained in the Fe2B layer. Surf Coat Technol 237:292–298

    Article  Google Scholar 

  • Horlock AJ, McCartney DG, Shipway PH, Wood JV (2002) Thermally sprayed Ni(Cr)–TiB2 coatings using powder produced by self-propagating high temperature synthesis: microstructure and abrasive wear behaviour. Mater Sci Eng, A 336:88–98

    Article  Google Scholar 

  • Huang C, Zhang B, Lan H, Du L, Zhang W (2014) Friction properties of high temperature boride coating under dry air and water vapor ambiences. Ceram Int 40:12403–12411

    Article  CAS  Google Scholar 

  • Jin HW, Park CG, Kim MC (1999) Microstructure and amorphization induced by frictional work in Fe–Cr–B alloy thermal spray coatings. Surf Coat Technol 113:103–112

    Article  CAS  Google Scholar 

  • Johnston JM, Baker P, Catledge SA (2016) Improved nanostructured diamond adhesion on cemented tungsten carbide with boride interlayers. Diam Relat Mater 69:114–120

    Article  CAS  Google Scholar 

  • Kh Kadyrov V, Polishchuk E, Khairutdinov AM (1985) Protective properties of detonation-deposited coatings from powders alloyed with aluminum and boron. Poroshk Metall/Powder Metall Met Ceram 8(272):52–55

    Google Scholar 

  • Kaestner P, Olfe J, Rie KT (2001) Plasma-assisted boriding of pure titanium and TiAl6V4. Surf Coat Technol 142–144:248–252

    Article  Google Scholar 

  • Kartal G, Timur S, Urgen M, Erdemir A (2010) Electrochemical boriding of titanium for improved mechanical properties. Surf Coat Technol 204:3935–3939

    Article  CAS  Google Scholar 

  • Keddam M, Chegroune R (2010) A model for studying the kinetics of the formation of Fe2B boride layers at the surface of a gray cast iron. Appl Surf Sci 256:5025–5030

    Article  CAS  Google Scholar 

  • Khor KA, Yu LG, Sundararajan G (2005) Formation of hard tungsten boride layer by spark plasma sintering boriding. Thin Solid Films 478:232–237

    Article  CAS  Google Scholar 

  • Kim H-J, Yoon B-H, Lee C-H (2001) Wear performance of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process. Wear 249:846–852

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2003) Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting. Appl Surf Sci 214:278–288

    Article  CAS  Google Scholar 

  • Kulka M, Dziarski P, Makuch N, Piasecki A, Miklaszewski A (2013a) Microstructure and properties of laser-borided Inconel 600-alloy. Appl Surf Sci 284:757–771

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Pertek A (2013b) Microstructure and properties of laser-borided 41Cr4 steel. Opt Laser Technol 45:308–318

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Dziarski P, Piasecki A, Miklaszewski A (2014) Microstructure and properties of laser-borided composite layers formed on commercially pure titanium. Opt Laser Technol 56:409–424

    Article  CAS  Google Scholar 

  • Kusmanov SA, Silkin SA, Smirnov AA, Belkin PN (2017) Possibilities of increasing wear resistance of steel surface by plasma electrolytic treatment. Wear 386–387:239–246

    Article  Google Scholar 

  • Li C, ShenB Li G, Yang C (2008) Effect of boronizing temperature and time on microstructure and abrasion wear resistance of Cr12Mn2V2 high chromium cast iron. Surf Coat Technol 202:5882–5886

    Article  CAS  Google Scholar 

  • Liao PK, Spear KE (1988) The B − Co (Boron-Cobalt) system. Bull Alloy Phase Diagrams 9(4):452–457

    Article  Google Scholar 

  • Liao PK, Spear KE (1990) B-Fe (Boron-Iron). In: Massalski TB (ed) Binary alloy phase diagrams, 2nd edn. ASM International, Metals Park, OH, pp 480–482

    Google Scholar 

  • Liao PK, Spear KE (1991) B-Ni (Boron-Nickel). In: Nash P (ed) Phase diagrams of binary nickel alloys’ ASM International, Materials Park, OH, pp 31–36

    Google Scholar 

  • Liao PK, Spear KE (1993) B-Fe (Boron-Iron) In: Okamoto H (ed) Phase diagrams of binary iron alloys’ ASM International, Materials Park, OH, pp 41–47

    Google Scholar 

  • Lou DC, Solberg JK, Akselsen OM, Dahl N (2009) Microstructure and property investigation of paste boronized pure nickel and Nimonic 90 superalloy. Mater Chem Phys 115:239–244

    Article  CAS  Google Scholar 

  • Majumdar JD, Li L (2010) Development of titanium boride (TiB) dispersed titanium (Ti) matrix composite by direct laser cladding. Mater Lett 64:1010–1012

    Article  Google Scholar 

  • Makuch N, Kulka M (2014) Microstructural characterization and some mechanical properties of gas-borided Inconel 600-alloy. Appl Surf Sci 314:1007–1018

    Article  CAS  Google Scholar 

  • Makuch N, Kulka M, Dziarski P, Przestacki D (2014) Laser surface alloying of commercially pure titanium with boron and carbon. Opt Lasers Eng 57:64–81

    Article  Google Scholar 

  • Makuch N, Kulka M, Piasecki A (2015a) The effects of chemical composition of Nimonic 80A-alloy on the microstructure and properties of gas-borided layer. Surf Coat Technol 276:440–455

    Article  CAS  Google Scholar 

  • Makuch N, Piasecki A, Dziarski P, Kulka M (2015b) Influence of laser alloying with boron and niobium on microstructure and properties of Nimonic 80A-alloy. Opt Laser Technol 75:229–239

    Article  CAS  Google Scholar 

  • Makuch N, Kulka M, Keddam M, Taktak S, Ataibis V, Dziarski P (2017) Growth kinetics and some mechanical properties of two-phase boride layers produced on commercially pure titanium during plasma paste boriding. Thin Solid Films 626:25–37

    Article  CAS  Google Scholar 

  • Mann BS, Arya V, Pant BK (2011) Enhanced erosion protection of TWAS coated Ti6Al4 V alloy using boride bond coat and subsequent laser treatment. J Mater Eng Perform 20(6):932–940

    Article  CAS  Google Scholar 

  • Mariani FE, Takeya GS, Casteletti LC (2015a) Boroaustempering treatment on alloyed ductile irons. Proceedings of the 28th ASM heat treating society conference, October 20–22, Detroit, Michigan, USA, pp 686–691

    Google Scholar 

  • Mariani FE, Rego GC, Casteletti LC (2015b) Study of boriding kinetics for alloyed ductile irons. Proceedings of the 28th ASM heat treating society conference, October 20–22, Detroit, Michigan, USA, pp. 696–701

    Google Scholar 

  • Milési F, Coig M, Lerat JF, Desrues T, Le Perchec J, Lanterne A, Lachal L, Mazen F (2017) Homojunction silicon solar cells doping by ion implantation. Nuclear Instruments Methods Phys Res B 409:53–59

    Article  Google Scholar 

  • Mindivan H (2016) Investigation of thermochemical boriding effect on wear behavior of a GGG 50 quality as-cast ductile iron. Ind Lubr Tribol 68(4):476–481

    Article  Google Scholar 

  • Murray JL, Liao PK, Spear KE (1986) The B–Ti (Boron–Titanium) system. Bull Alloy Phase Diagrams 7(6):550–555

    Article  CAS  Google Scholar 

  • Murray JL, Liao PK, Spear KE (1992) In: Baker H (ed) ASM Handbook: alloy Phase Diagrams, vol 3, ASM International, Materials Park, OH, p 2

    Google Scholar 

  • Nedaiborshch SD, Shchepetov VV (2014) Wear resistance of detonation-sprayed Cr-Si-B coatings under friction at elevated temperatures. Poroshk Metall/Powder Metall Met Ceram 53(1–2):64–69

    Article  CAS  Google Scholar 

  • Ozbek I, Bindal C (2002) Mechanical properties of boronized AISI W4 steel. Surf Coat Technol 154:14–20

    Article  CAS  Google Scholar 

  • Ozbek I, Bindal C (2011) Kinetics of borided AISI M2 high speed steel. Vacuum 86:391–397

    Article  CAS  Google Scholar 

  • Paczkowska M, Ratuszek W, Waligóra W (2010) Microstructure of laser boronized nodular iron. Surf Coat Technol 205:2542–2545

    Article  CAS  Google Scholar 

  • Pomel’nikova AS, Shipko MN, Stepovich MA (2011) Features of structural changes due to the formation of the boride crystal structure in steels. J Surf Inv 5:298–304

    Article  Google Scholar 

  • Ribeiro R, Ingole S, Usta M, Bindal C, Üçisik AH, Liang H (2006) Tribological characteristics of boronized niobium for biojoint applications. Vacuum 80:1341–1345

    Article  CAS  Google Scholar 

  • Rodríguez-Castro G, Campos-Silva I, Chávez-Gutiérrez E, Martínez-Trinidad J, Hernández-Sánchez E, Torres-Hernández A (2013) Mechanical properties of FeB and Fe2B layers estimated by Berkovich nanoindentation on tool borided steel. Surf Coat Technol 215:291–299

    Article  Google Scholar 

  • Sakata K, Nakano K, Miyahara H, Matsubara Y, Ogi K (2007) Microstructure control of thermally sprayed Co-Based self-fluxing alloy coatings by diffusion treatment. J Therm Spray Technol 16(5–6):991–997

    Article  CAS  Google Scholar 

  • Shankar P, Karthikeyan NR, Kamaraj M, Angelo PC (2010) Laser modification of detonation-gun sprayed ferro-boron coatings on AISI 304L SS. Trans Indian Inst Met 64(3):751–756

    Article  Google Scholar 

  • Sharma P, Majumdar JD (2012) Surface characterization and mechanical properties’ evaluation of boride-dispersed nickel-based coatings deposited on copper through thermal spray routes. J Therm Spray Technol 21(5):800–809

    Article  CAS  Google Scholar 

  • Sidhu TS, Prakash S, Agrawal RD (2006) Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni- and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900 °C. Acta Mater 54:773–784

    Article  CAS  Google Scholar 

  • Sista V, Kahvecioglu O, Kartal G, Zeng QZ, Kim JH, Eryilmaz OL, Erdemir A (2013) Evaluation of electrochemical boriding of Inconel 600. Surf Coat Technol 215:452–459

    Article  CAS  Google Scholar 

  • Storozhenko MS, Umanskii AP, Terentiev AE, Zakiev IM (2017) Effect of the structure of TiB2–(Fe–Mo) plasma coatings on mechanical and tribotechnical properties. Poroshk Metall/Powder Metall Met Ceram 56(1–2):60–69

    Article  CAS  Google Scholar 

  • Sudha C, Shankar P, Subba Rao RV, Thirumurugesan R, Vijayalakshmi M, Raj B (2008) Microchemical and microstructural studies in a PTA weld overlay of Ni–Cr–Si–B alloy on AISI 304L stainless steel. Surf Coat Technol 202:2103–2112

    Article  CAS  Google Scholar 

  • Tarakci M, Gencer Y, Çalik A (2010) The pack-boronizing of pure vanadium under a controlled atmosphere. Appl Surf Sci 256:7612–7618

    Article  CAS  Google Scholar 

  • Tikekar NM, Ravi Chandran KS, Sanders A (2007) Nature of growth of dual titanium boride layers with nanostructured titanium boride whiskers on the surface of titanium. Scripta Mater 57:273–276

    Article  CAS  Google Scholar 

  • Tillmann W, Hollingsworth PS, Fischer G, Nellesen J, Beckmann F (2014) Development and characterization of B4C reinforced detonation-sprayed Al coatings. J Therm Spray Technol 23(3):289–295

    Article  CAS  Google Scholar 

  • Üçisik AH, Bindal C (1997) Fracture toughness of boride formed on low-alloys steels. Surf Coat Technol 94–95:561–565

    Article  Google Scholar 

  • Ueda N, Mizukoshi T, Demizu K, Sone T, Ikenaga A, Kawamoto M (2000) Boriding of nickel by the powder-pack method. Surf Coat Technol 126:25–30

    Article  CAS  Google Scholar 

  • Usta M (2005) The characterization of borided pure niobium. Surf Coat Technol 194:251–255

    Article  CAS  Google Scholar 

  • Usta M, Ozbek I, Ipek M, Bindal C, Üçisik AH (2005) The characterization of borided pure tungsten. Surf Coat Technol 194:330–334

    Article  CAS  Google Scholar 

  • Yu LG, Khor KA, Sundararajan G (2006) Boride layer growth kinetics during boriding of molybdenum by the Spark Plasma Sintering (SPS) technology. Surf Coat Technol 201:2849–2853

    Article  CAS  Google Scholar 

  • Zhao Z, Li H, Yang T, Zhu H (2018) Tribological properties of HVOF-sprayed TiB2-NiCr coatings with agglomerated feedstocks. J Therm Spray Technol 27(4):718–726

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Kulka .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulka, M. (2019). Borided Materials. In: Current Trends in Boriding. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-06782-3_3

Download citation

Publish with us

Policies and ethics