Skip to main content

A Bayesian Network Model for the Parkinson’s Disease: A Study of Gene Expression Levels

  • Chapter
  • First Online:
Current Trends in Semantic Web Technologies: Theory and Practice

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by tremor, postural instability, bradykinesia and rigidity. It is the second most prevalent neurodegenerative disease in the world. Currently, no cure has been found. Multiple investigations have proposed environmental and genetic factors, but no one has been determined as the trigger for the development of this disease, so it is a public health challenge in our society characterized by the increase of elderly people. The use of machine learning techniques has increased in the medical field and to help solve biological problems. The unprecedented volume of biomedical data provides a great opportunity for better understanding, prediction and decision making of conditions. In this study, we modeled gene expression profiles of peripheral blood samples from 105 individuals (50 with PD, 33 with control of neurodegenerative diseases, other than PD, and 22 healthy controls) using Bayesian networks with different dimensionality reduction techniques to create several sets of genes. From the obtained sets, classification models were generated and some genes that could be considered as PD candidates were obtained and some genes previously reported with this disease were corroborated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rietdijk, C.D., Perez-Pardo, P., Garssen, J., van Wezel, R.J.A., Kraneveld, A.D.: Exploring Braak’s hypothesis of Parkinson’s disease. Front. Neurol. 8, 37 (2017)

    Article  Google Scholar 

  2. Secretaría de Salud: Diagnóstico y tratamiento de la Enfermedad de Parkinson inicial y avanzada en el tercer nivel de atención, p. 95 (2010)

    Google Scholar 

  3. Castro Toro, A., Buritic, O.F.: Enfermedad de parkinson: criterios diagnósticos, factores de riesgo y de progresión, y escalas de valoración del estadio clínico. Acta Neurol. Colomb 30, 300–306 (2014)

    Google Scholar 

  4. Parkinson, J.: An essay on the shaking palsy. J. Neuropsychiatry Clin. Neurosci. 14, 223–236 (2002)

    Article  Google Scholar 

  5. Allam, M.: Metaanális de los factores de riesgo en la enfermedad de Parkinson (2003)

    Google Scholar 

  6. Gómez-Chavarín, M., Torres-Ortiz, M.C., Perez-Soto, G.: Interacción entre factores genéticosambientales y la epigénesis de la enfermedad de Parkinson. Arch. Neurociencias 21, 32–44 (2016)

    Google Scholar 

  7. Parkinsons Disease Foundation: Parkinson’s Disease, pp. 1–12 (2014)

    Google Scholar 

  8. Gallagher, C., Adam Rindfleisch, J., Podein, R.: Capítulo 17—Enfermedad de Parkinson. Presented at the (2009)

    Google Scholar 

  9. Lyons, J., Lieberman, A.: Medicamentos para la enfermedad de Parkinson, AD (2008)

    Google Scholar 

  10. Martín Lunar, M., Elvira Peña, L., Gutiérrez Casares, J.R.: Fenómenos on-off de conducta en la enfermedad de Parkin. Psiquiatr. Biológica 10, 36–41 (2003)

    Google Scholar 

  11. Martínez-Fernández., R., Gasca-Salas C.C., Sánchez-Ferro, Á., Ángel Obeso, J.: Actualización En La Enfermedad De Parkinson. Rev. Médica Clínica Las Condes 27, 363–379 (2016)

    Google Scholar 

  12. García-Crespo, A., Alor-Hernández, G., Battistella, L., Rodríguez-González, A.: Editorial: methods and models for diagnosis and prognosis in medical systems. Comput. Math. Methods Med. (2013)

    Google Scholar 

  13. Rodríguez-González, A., Torres-Niño, J., Valencia-Garcia, R., Mayer, M.A., Alor-Hernandez, G.: Using experts feedback in clinical case resolution and arbitration as accuracy diagnosis methodology. Comput. Biol. Med. 43, 975–986 (2013)

    Article  Google Scholar 

  14. Rodríguez-González, A., Alor-Hernández, G.: An approach for solving multi-level diagnosis in high sensitivity medical diagnosis systems through the application of semantic technologies. Comput. Biol. Med. 43, 51–62 (2013)

    Article  Google Scholar 

  15. Rodríguez-González, A., Torres-Niño, J., Alor-Hernandez, G.: IKS index: a knowledge-model driven index to estimate the capability of medical diagnosis systems to produce results. Expert Syst. Appl. 40, 6798–6804 (2013)

    Article  Google Scholar 

  16. Chicco, D.: Ten quick tips for machine learning in computational biology. BioData Min. 10, 35 (2017)

    Article  Google Scholar 

  17. Berg, D., Lang, A.E., Postuma, R.B., Maetzler, W., Deuschl, G., Gasser, T., Siderowf, A., Schapira, A.H., Oertel, W., Obeso, J.A., Olanow, C.W., Poewe, W., Stern, M.: Changing the research criteria for the diagnosis of Parkinson’s disease: obstacles and opportunities. Lancet Neurol. 12, 514–524 (2013)

    Article  Google Scholar 

  18. Romo-Gutiérrez, D., Petra-Yescas, López-López, M., Boll, M.C.: Factores genéticos de la demencia en la enfermedad de parkinson (EP). Gac. Med. Mex. 151, 110–118 (2015)

    Google Scholar 

  19. Schulte, C., Gasser, T.: Genetic basis of Parkinson’s disease: inheritance, penetrance, and expression. Appl. Clin. Genet. 4, 67–80 (2011)

    Google Scholar 

  20. Miranda, J., Bringas, R.: Análisis de datos de microarreglos de ADN Parte I: Antecedentes de la tecnología y diseño experimental. Biotecnol. Apl. 25, 82–96 (2008)

    Google Scholar 

  21. Pashaei, E., Ozen, M., Aydin, N.: Biomarker discovery based on BBHA and AdaboostM1 on microarray data for cancer classification. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3080–3083 (2016)

    Google Scholar 

  22. Wu, M., Dai, D., Shi, Y., Yan, H., Zhang, X.: Biomarker identification and cancer classification based on microarray data using Laplace Naive Bayes model with mean shrinkage. IEEE/ACM Trans. Comput. Biol. Bioinforma. 9, 1649–1662 (2012)

    Article  Google Scholar 

  23. Rivas-Lopez, M.J., Sánchez-Santos, J.M., De Las Rivas, J.: Estructura y análisis de microarrays. BEIO 21(1998), 10–15 (2005)

    Google Scholar 

  24. Cano Gutiérrez, C.: Extracción de conocimiento de microarrays y literatura biomédica para el estudio de la regulación genética. http://hdl.handle.net/10481/4864 (2010)

  25. Elo, L.L., Filen, S., Lahesmaa, R., Aittokallio, T.: Reproducibility-optimized test statistic for ranking genes in microarray studies. IEEE/ACM Trans. Comput. Biol. Bioinf. 5, 423–431 (2008)

    Article  Google Scholar 

  26. Nagarajan, R., Upreti, M.: Correlation statistics for cDNA microarray image analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 3, 232–238 (2006)

    Article  Google Scholar 

  27. Hu, P., Greenwood, C.M., Beyene, J.: Integrating affymetrix microarray data sets using probe-level test statistic for predicting prostate cancer. In: 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, pp. 1–8 (2006)

    Google Scholar 

  28. Kumar, G., Lahiri, T., Kumar, R.: Statistical discrimination of breast cancer microarray data. In: 2016 International Conference on Bioinformatics and Systems Biology (BSB), pp. 1–4 (2016)

    Google Scholar 

  29. Shashirekha, H.L., Wani, A.H.: A comparative study of statistical and clustering techniques based meta-analysis to identify differentially expressed genes. In: 2016 IEEE International Conference on Advances in Computer Applications (ICACA), pp. 87–93 (2016)

    Google Scholar 

  30. Sheela, T., Rangarajan, L.: Statistical class prediction method for efficient microarray gene expression data sample classification. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 73–78 (2017)

    Google Scholar 

  31. Poreva, A., Karplyuk, Y., Vaityshyn, V.: Machine learning techniques application for lung diseases diagnosis. In: 2017 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), pp. 1–5 (2017)

    Google Scholar 

  32. Anakal, S., Sandhya, P.: Clinical decision support system for chronic obstructive pulmonary disease using machine learning techniques. In: 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), pp. 1–5 (2017)

    Google Scholar 

  33. Raut, A., Dalal, V.: A machine learning based approach for detection of Alzheimer’s disease using analysis of hippocampus region from MRI scan. In: 2017 International Conference on Computing Methodologies and Communication (ICCMC), pp. 236–242 (2017)

    Google Scholar 

  34. Noticias CIEMAT: El proyecto IMED seleccionado como caso de éxito de I + D + i (2016)

    Google Scholar 

  35. Romano, M., Nissen, M.D., Del Huerto, N., Parquet, C.: Enfermedad de Alzheimer. Rev. posgrado la Vía Cátedra Med. 75, 9–12 (2007)

    Google Scholar 

  36. Bermejo-Pareja, F., Llamas-Velasco, S., Villarejo-Galende, A.: Prevención de la enfermedad de Alzheimer: un camino a seguir. Rev. Clínica Española 216, 495–503 (2016)

    Article  Google Scholar 

  37. Graham, J.G., Oppenheimer, D.R.: Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J. Neurol. Neurosurg. Psychiatry 32, 28–34 (1969)

    Article  Google Scholar 

  38. Pereiro, I., Arias, M., Requena, I.: Signo de santiaguiño en la atrofia multisistémica. Neurología 25, 336–337 (2010)

    Article  Google Scholar 

  39. Pérez Rodríguez, M., Álvarez Gómez, T., Lezcano Pérez, Y., Tahir Shabbir, M., Valdivia Cañizares, S.: Atrofia multisistémica. Presentación de un caso (2014)

    Google Scholar 

  40. Litvan, I., Mangone, C.A., McKee, A., Verny, M., Parsa, A., Jellinger, K., D’Olhaberriague, L., Chaudhuri, K.R., Pearce, R.K.: Natural history of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) and clinical predictors of survival: a clinicopathological study. J. Neurol. Neurosurg. Psychiatry 60, 615–620 (1996)

    Article  Google Scholar 

  41. Ling, H.: Clinical approach to progressive supranuclear palsy. J. Mov. Disord. 9, 3–13 (2016)

    Article  Google Scholar 

  42. Abramson, J.H.: Métodos de estudio en medicina comunitaria: una introducción a los estudios epidemiológicos y de evaluación. Ediciones Díaz de Santos (1990)

    Google Scholar 

  43. Lewin, B.: genes IX. 2008. Jones Barlett Publ. (2008)

    Google Scholar 

  44. Moreno, V., Solé, X.: Uso de chips de ADN (microarrays) en medicina: fundamentos técnicos y procedimientos básicos para el análisis estadístico de resultados. Med. Clin. (Barc) 122, 73–79 (2004)

    Article  Google Scholar 

  45. Pontes, B., Rodríguez-Baena, D., Díaz-Díaz, N.: Análisis de Datos de Expresión Genética. Jornadas de. (2006)

    Google Scholar 

  46. Arango, S.: Biomarcadores para la evaluación de riesgo en la salud humana. Rev. Fac. Nac. Salud Pública 30, 75–82 (2012)

    Google Scholar 

  47. Bazazeh, D., Shubair, R.M., Malik, W.Q.: Biomarker discovery and validation for Parkinson’s disease: a machine learning approach. In: 2016 International Conference on Bio-engineering for Smart Technologies (BioSMART), pp. 1–6 (2016)

    Google Scholar 

  48. Sharma, S., Moon, C.S., Khogali, A., Haidous, A., Chabenne, A., Ojo, C., Jelebinkov, M., Kurdi, Y., Ebadi, M.: Biomarkers in Parkinson’s disease (recent update). Neurochem. Int. 63, 201–229 (2013)

    Article  Google Scholar 

  49. Kaddurah-Daouk, R., Soares, J.C., Quinones, M.P.: Metabolomics: a global biochemical approach to the discovery of biomarkers for psychiatric disorders BT—biomarkers for psychiatric disorders. Presented at the (2009)

    Google Scholar 

  50. Hazan, H., Hilu, D., Manevitz, L., Ramig, L.O., Sapir, S.: Early diagnosis of Parkinson’s disease via machine learning on speech data. In: 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, pp. 1–4 (2012)

    Google Scholar 

  51. Sapir, S., Ramig, L.O., Spielman, J.L., Fox, C.: Formant centralization ratio: a proposal for a new acoustic measure of dysarthric speech. J. Speech Lang. Hear. Res. 53, 114 (2010)

    Article  Google Scholar 

  52. Sapir, S., Spielman, J.L., Ramig, L.O., Story, B.H., Fox, C.: Shimon Sapir. Hear. Res. 50, 899–913 (2007)

    Google Scholar 

  53. Skodda, S., Visser, W., Schlegel, U.: Vowel articulation in Parkinson’s disease. J. Voice 25, 467–472 (2011)

    Article  Google Scholar 

  54. Vadovský, M., Paralič, J.: Parkinson’s disease patients classification based on the speech signals. In: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 321–326 (2017)

    Google Scholar 

  55. Yadav, G., Kumar, Y., Sahoo, G.: Predication of Parkinson’s disease using data mining methods: a comparative analysis of tree, statistical and support vector machine classifiers. In: 2012 National Conference on Computing and Communication Systems, pp. 1–8 (2012)

    Google Scholar 

  56. Xiao, H.: Diagnosis of Parkinson’s disease using genetic algorithm and support vector machine with acoustic characteristics. In: 2012 5th International Conference on BioMedical Engineering and Informatics, pp. 1072–1076 (2012)

    Google Scholar 

  57. Prashanth, R., Dutta Roy, S., Mandal, P.K., Ghosh, S.: High-accuracy detection of early parkinson’s disease through multimodal features and machine learning. Int. J. Med. Inform. 90, 13–21 (2016)

    Article  Google Scholar 

  58. Challa, K.N.R., Pagolu, V.S., Panda, G., Majhi, B.: An improved approach for prediction of Parkinson’s disease using machine learning techniques. In: 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 1446–1451 (2016)

    Google Scholar 

  59. Joshi, S., Shenoy, D., Vibhudendra Simha, G.G., Rrashmi, P.L., Venugopal, K.R., Patnaik, L.M.: Classification of Alzheimer’s disease and Parkinson’s disease by using machine learning and neural network methods. In: 2010 Second International Conference on Machine Learning and Computing, pp. 218–222 (2010)

    Google Scholar 

  60. Manap, H.H., Tahir, N.M., Abdullah, R.: Parkinsonian gait motor impairment detection using decision tree. In: 2013 European Modelling Symposium, pp. 209–214 (2013)

    Google Scholar 

  61. Morales, D.A., Vives-Gilabert, Y., Gómez-Ansón, B., Bengoetxea, E., Larrañaga, P., Bielza, C., Pagonabarraga, J., Kulisevsky, J., Corcuera-Solano, I., Delfino, M.: Predicting dementia development in Parkinson’s disease using Bayesian network classifiers. Psychiatry Res. Neuroimaging 213, 92–98 (2013)

    Article  Google Scholar 

  62. Exarchos, T.P., Tzallas, A.T., Baga, D., Chaloglou, D., Fotiadis, D.I., Tsouli, S., Diakou, M., Konitsiotis, S.: Using partial decision trees to predict Parkinson’s symptoms: a new approach for diagnosis and therapy in patients suffering from Parkinson’s disease. Comput. Biol. Med. 42, 195–204 (2012)

    Article  Google Scholar 

  63. Sateesh Babu, G., Suresh, S.: Parkinson’s disease prediction using gene expression—a projection based learning meta-cognitive neural classifier approach. Expert Syst. Appl. 40, 1519–1529 (2013)

    Article  Google Scholar 

  64. Sachnev, V., Kim, H.J.: Parkinson disease classification based on binary coded genetic algorithm and extreme learning machine. http://www.scopus.com/inward/record.url?scp=84903721396&partnerID=8YFLogxK (2014)

  65. Karlsson, M.K., Lönneborg, A., Sæbø, S.: Microarray-based prediction of Parkinson’s disease using clinical data as additional response variables. Stat. Med. 31, 4369–4381 (2012)

    Article  MathSciNet  Google Scholar 

  66. Scherzer, C.R., Eklund, A.C., Morse, L.J., Liao, Z., Locascio, J.J., Fefer, D., Schwarzschild, M.A., Schlossmacher, M.G., Hauser, M.A., Vance, J.M., Sudarsky, L.R., Standaert, D.G., Growdon, J.H., Jensen, R.V, Gullans, S.R.: Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc. Natl. Acad. Sci. 104, 955 LP-960 (2007)

    Article  Google Scholar 

  67. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P., Holstege, F.C.P., Kim, I.F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J., Vingron, M.: Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat. Genet 29, 365 (2001)

    Article  Google Scholar 

  68. Stafford, P.: Methods in microarray normalization. CRC Press (2008)

    Google Scholar 

  69. Allen, T.: Detecting differential gene expression using affymetrix microarrays. Math. J. 15 (2013)

    Google Scholar 

  70. Miranda, J., Bringas, R.: Análisis de datos de microarreglos de ADN. Parte II: Cuantificación y análisis de la expresión génica. Biotecnol. Apl. 25, 290–311 (2008)

    Google Scholar 

  71. Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003)

    Article  Google Scholar 

  72. Wu, Z., Irizarry, R.: Description of gcrma package. R Packag. Vignette 1–6 (2014)

    Google Scholar 

  73. Affymetrix, Inc., Statistical Algorithms Description Document © 2002 (2002)

    Google Scholar 

  74. Gautier, L., Irizarry, R., Cope, L., Bolstad, B.: Description of affy. Changes 1–29 (2009)

    Google Scholar 

  75. Bolstad, B.: Affy: built-in processing methods, pp. 1–7 (2017)

    Google Scholar 

  76. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference, Elsevier (2014)

    Google Scholar 

  77. Heckerman, D.: A tutorial on learning with bayesian networks. Microsoft Res. 1995, 1996

    Google Scholar 

  78. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)

    Article  Google Scholar 

  79. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comp. Biol. 7, 601–620 (2000)

    Article  Google Scholar 

  80. Le, P.P., Bahl, A., Ungar, L.H.: Using prior knowledge to improve genetic network reconstruction from microarray data. Silico Biol. 4, 335–353 (2004)

    Google Scholar 

  81. Ching, J.Y., Wong, A.K.C., Chan, K.C.C.: Class-dependent discretization for inductive learning from continuous and mixed-mode data. IEEE Trans. Pattern Anal. Mach. Intell. 17, 641–651 (1995)

    Article  Google Scholar 

  82. Wong, A.K.C., Chiu, D.K.Y.: Synthesizing statistical knowledge from incomplete mixed-mode data. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9 796–805 (1987)

    Article  Google Scholar 

  83. Kerber, R.: ChiMerge: discretization of numeric attributes. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 123–128. AAAI Press (1992)

    Google Scholar 

  84. Liu, H., Setiono, R.: Feature selection via discretization. IEEE Trans. Knowl. Data Eng. 9, 642–645 (1997)

    Article  Google Scholar 

  85. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning (1993)

    Google Scholar 

  86. Kurgan, L.A., Cios, K.J.: CAIM discretization algorithm. IEEE Trans. Knowl. Data Eng. 16, 145–153 (2004)

    Article  Google Scholar 

  87. Bie, C.Y.C., Shen, H.C., Chiu, D.K.Y.: Hierarchical maximum entropy partitioning in texture image analysis. Pattern Recognit. Letter 14, 421–429 (1993)

    Google Scholar 

  88. McDonald, J.H.: Handbook of biological statistics. sparky house publishing Baltimore, MD (2009)

    Google Scholar 

  89. Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11, 10–18 (2009)

    Article  Google Scholar 

  90. Gautier, L., Cope, L., Bolstad, B.M., Irizarry, R.A.: Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004)

    Article  Google Scholar 

  91. Zhang, L., Guo, X.Q., Chu, J.F., Zhang, X., Yan, Z.R., Li, Y.Z.: Potential hippocampal genes and pathways involved in Alzheimer’s disease: a bioinformatic analysis. Genet. Mol. Res. 14, 7218–7232 (2015)

    Article  Google Scholar 

  92. Sun, A.-G., Wang, J., Shan, Y.-Z., Yu, W.-J., Li, X., Cong, C.-H., Wang, X.: Identifying distinct candidate genes for early Parkinson’s disease by analysis of gene expression in whole blood. Neuro Endocrinol. Lett. 35, 398–404 (2014)

    Google Scholar 

  93. Edlich, F., Fischer, G.: Pharmacological targeting of catalyzed protein folding: the example of peptide bond cis/trans isomerases BT—molecular chaperones in health and disease. Presented at the (2006)

    Google Scholar 

  94. Gerard, M., Deleersnijder, A., Daniëls, V., Schreurs, S., Munck, S., Reumers, V., Pottel, H., Engelborghs, Y., Van den Haute, C., Taymans, J.-M., Debyser, Z., Baekelandt, V.: Inhibition of FK506 binding proteins reduces α-Synuclein aggregation and Parkinsons disease-like pathology. J. Neurosci. 30, 2454 LP-2463 (2010)

    Article  Google Scholar 

  95. Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., Nativ, N., Bahir, I., Doniger, T., Krug, H.: GeneCards Version 3: the human gene integrator. Database (2010)

    Google Scholar 

  96. Mescheriakova, J.Y., Verkerk, A.J.M.H., Amin, N., Uitterlinden, A.G., van Duijn, C.M., Hintzen, R.Q.: Linkage analysis and whole exome sequencing identify a novel candidate gene in a Dutch multiple sclerosis family. Mult. Scler. J. 1352458518777202 (2018)

    Google Scholar 

  97. McCoy, M.K., Kaganovich, A., Rudenko, I.N., Ding, J., Cookson, M.R.: Hexokinase activity is required for recruitment of parkin to depolarized mitochondria. Hum. Mol. Genet. 23, 145–156 (2014)

    Article  Google Scholar 

  98. Yang, Y., Zhang, Y., Qu, X., Xia, J., Li, D., Li, X., Wang, Y., He, Z., Li, S., Zhou, Y., Xie, L., Yang, Z., Yang, Y., Zhang, Y., Qu, X., Xia, J., Li, D., Li, X., Wang, Y., He, Z., Li, S., Zhou, Y., Xie, L., Yang, Z.: Identification of differentially expressed genes in the development of osteosarcoma using RNA-seq. Oncotarget 7, 87194–87205 (2016)

    Google Scholar 

  99. Shen, Z.-J., Hu, J., Esnault, S., Dozmorov, I., Malter, J.S.: RNA Seq profiling reveals a novel expression pattern of TGF-β target genes in human blood eosinophils. Immunol. Letter 167, 1–10 (2015)

    Google Scholar 

  100. Xu, T., Jin, Z., Yuan, Y., Zheng, H., Li, C., Hou, W., Guo, Q., Hua, B.: Tat-Interacting Protein 30 (TIP30) expression serves as a new biomarker for tumor prognosis: a systematic review and meta-analysis. PLoS ONE 11, e0168408 (2016)

    Article  Google Scholar 

  101. Nanok, C., Jearanaikoon, P., Proungvitaya, S., Limpaiboon, T.: Aberrant methylation of HTATIP2 and UCHL1 as a predictive biomarker for cholangiocarcinoma. Mol. Med. Rep. 17, 4145–4153 (2018)

    Google Scholar 

  102. Valente, A.X.C.N., Sousa, J.A.B., Outeiro, T.F., Ferreira, L.: A stem-cell ageing hypothesis on the origin of Parkinson’s disease. arXiv:1003.1993 (2010)

  103. Scherzer, C.R., Eklund, A.C., Morse, L.J., Liao, Z., Locascio, J.J., Fefer, D., Schwarzschild, M.A., Schlossmacher, M.G., Hauser, M.A., Vance, J.M., Sudarsky, L.R., Standaert, D.G., Growdon, J.H., Jensen, R.V, Gullans, S.R.: Molecular markers of early Parkinsons disease based on gene expression in blood. Proc. Natl. Acad. Sci. 104, 955 LP-960 (2007)

    Article  Google Scholar 

  104. Liang, L., Gao, C., Li, Y., Sun, M., Xu, J., Li, H., Jia, L., Zhao, Y.: miR-125a-3p/FUT5-FUT6 axis mediates colorectal cancer cell proliferation, migration, invasion and pathological angiogenesis via PI3K-Akt pathway. Cell Death Dis. 8, e2968 (2017)

    Article  Google Scholar 

  105. Li, N., Liu, Y., Miao, Y., Zhao, L., Zhou, H., Jia, L.: MicroRNA-106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer. IUBMB Life 68, 764–775 (2016)

    Article  Google Scholar 

  106. Shen, X., Klarić, L., Sharapov, S., Mangino, M., Ning, Z., Wu, D., Trbojević-Akmačić, I., Pučić-Baković, M., Rudan, I., Polašek, O.: Multivariate discovery and replication of five novel loci associated with immunoglobulin GN-glycosylation. Nat. Commun. 8, 447 (2017)

    Article  Google Scholar 

  107. Russell, A.C., Šimurina, M., Garcia, M.T., Novokmet, M., Wang, Y., Rudan, I., Campbell, H., Lauc, G., Thomas, M.G., Wang, W.: The N-glycosylation of immunoglobulin G as a novel biomarker of Parkinson’s disease. Glycobiology 27, 501–510 (2017)

    Article  Google Scholar 

  108. Khan, M.A., Windpassinger, C., Ali, M.Z., Zubair, M., Gul, H., Abbas, S., Khan, S., Badar, M., Mohammad, R.M., Nawaz, Z.: Molecular genetic analysis of consanguineous families with primary microcephaly identified pathogenic variants in the ASPM gene. J. Genet. 96, 383–387 (2017)

    Article  Google Scholar 

  109. Yigit, G., Brown, K.E., Kayserili, H., Pohl, E., Caliebe, A., Zahnleiter, D., Rosser, E., Bögershausen, N., Uyguner, Z.O., Altunoglu, U.: Mutations in CDK 5 RAP 2 cause Seckel syndrome. Mol. Genet. genomic Med. 3, 467–480 (2015)

    Article  Google Scholar 

  110. Zhang, H., Zhu, Q., Cui, J., Wang, Y., Chen, M.J., Guo, X., Tagliabracci, V.S., Dixon, J.E., Xiao, J.: Structure and evolution of the Fam20 kinases. Nat. Commun. 9, 1218 (2018)

    Article  Google Scholar 

  111. Chang, D., Nalls, M.A., Hallgrímsdóttir, I.B., Hunkapiller, J., van der Brug, M., Cai, F., Kerchner, G.A., Ayalon, G., Bingol, B., Sheng, M.: A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat. Genet. 49, 1511 (2017)

    Article  Google Scholar 

  112. Pamphlett, R., Morahan, J.M., Yu, B.: Using case-parent trios to look for rare de novo genetic variants in adult-onset neurodegenerative diseases. J. Neurosci. Methods 197, 297–301 (2011)

    Article  Google Scholar 

  113. Toma, C., Hervás, A., Balmaña, N., Vilella, E., Aguilera, F., Cuscó, I., del Campo, M., Caballero, R., De Diego-Otero, Y., Ribasés, M.: Association study of six candidate genes asymmetrically expressed in the two cerebral hemispheres suggests the involvement of BAIAP2 in autism. J. Psychiatr. Res. 45, 280–282 (2011)

    Article  Google Scholar 

  114. McKinney, B., Ding, Y., Lewis, D.A., Sweet, R.A.: DNA methylation as a putative mechanism for reduced dendritic spine density in the superior temporal gyrus of subjects with schizophrenia. Transl. Psychiatry 7, e1032 (2017)

    Article  Google Scholar 

  115. Luksys, G., Ackermann, S., Coynel, D., Fastenrath, M., Gschwind, L., Heck, A., Rasch, B., Spalek, K., Vogler, C.: Papassotiropoulos, A., BAIAP2 is related to emotional modulation of human memory strength. PLoS ONE 9, e83707 (2014)

    Article  Google Scholar 

  116. Mohammadi, A., Mehdizadeh, A.R.: Deep brain stimulation and gene expression alterations in Parkinson’s disease. J. Biomed. Phys. Eng. 6 (2016)

    Google Scholar 

  117. Chen, Z., Simmons, M.S., Perry, R.T., Wiener, H.W., Harrell, L.E., Go, R.C.P.: Genetic association of neurotrophic tyrosine kinase receptor type 2 (NTRK2) with Alzheimer’s disease. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 147, 363–369 (2008)

    Article  Google Scholar 

  118. Torres, C.M., Siebert, M., Bock, H., Mota, S.M., Krammer, B.R., Duarte, J.Á., Bragatti, J.A., Castan, J.U., de Castro, L.A., Saraiva-Pereira, M.L.: NTRK2 (TrkB gene) variants and temporal lobe epilepsy: a genetic association study. Epilepsy Res. 137, 1–8 (2017)

    Article  Google Scholar 

  119. Yanai, A., Huang, K., Kang, R., Singaraja, R.R., Arstikaitis, P., Gan, L., Orban, P.C., Mullard, A., Cowan, C.M., Raymond, L.A.: Palmitoylation of huntingtin by HIP14is essential for its trafficking and function. Nat. Neurosci. 9, 824 (2006)

    Article  Google Scholar 

  120. Alvarado, C.V., Rubio, M.F., Larrosa, P.N.F., Panelo, L.C., Azurmendi, P.J., Grecco, M.R., Martínez-Nöel, G.A., Costas, M.A.: The levels of RAC3 expression are up regulated by TNF in the inflammatory response. FEBS Open Bio. 4, 450–457 (2014)

    Article  Google Scholar 

  121. Nagle, M.W., Latourelle, J.C., Labadorf, A., Dumitriu, A., Hadzi, T.C., Beach, T.G., Myers, R.H.: The 4p16. 3 Parkinson disease risk locus is associated with GAK expression and genes involved with the synaptic vesicle membrane. PLoS ONE 11, e0160925 (2016)

    Article  Google Scholar 

  122. Greene, L.A., Levy, O., Malagelada, C.: Akt as a victim, villain and potential hero in Parkinson’s disease pathophysiology and treatment. Cell. Mol. Neurobiol. 31, 969–978 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the computer resources, technical expertise and support provided by the Laboratorio Nacional de Supercómputo del Sureste de México, CONACYT network of national laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Lilia Mestizo-Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mestizo-Gutiérrez, S.L., Jácome-Delgado, J.A., Rosales-Morales, V.Y., Cruz-Ramírez, N., Aranda-Abreu, G.E. (2019). A Bayesian Network Model for the Parkinson’s Disease: A Study of Gene Expression Levels. In: Alor-Hernández, G., Sánchez-Cervantes, J., Rodríguez-González, A., Valencia-García, R. (eds) Current Trends in Semantic Web Technologies: Theory and Practice. Studies in Computational Intelligence, vol 815. Springer, Cham. https://doi.org/10.1007/978-3-030-06149-4_7

Download citation

Publish with us

Policies and ethics