Skip to main content

Interaction Net as a Representation Model of a Programming Language

  • Chapter
  • First Online:
Current Trends in Semantic Web Technologies: Theory and Practice

Part of the book series: Studies in Computational Intelligence ((SCI,volume 815))

Abstract

The following article presents an answer in the design of future solutions for highly interconnected environments based on the construction of a programming language, this language is a computational realization of the concept of interactions that uses the mathematical model of Interaction Nets. The purpose is to expose how this model adequately represents the needs of future challenges in the design and implementation of ad hoc networks, which are the floor of decentralized systems and the IoT (Internet of Things). It shows the conception of specific interactions and how they are written in the created language. The results show some real applications and the behavior of the tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jara, A.J., Olivieri, A.C., Bocchi, Y., Jung, M., Kastner, W., Skarmeta, A.F.: Semantic web of things: an analysis of the application semantics for the IoT moving towards the IoT convergence. Int. J. Web Grid Serv. 10(2–3), 244–272 (2014)

    Article  Google Scholar 

  2. Hitzler, P., Janowicz, K.: Semantic Web (2014)

    Google Scholar 

  3. W.W.W. Consortium: RDF 1.1 concepts and abstract syntax (2014)

    Google Scholar 

  4. Buranarach, M., Supnithi, T., Thein, Y.M., Ruangrajitpakorn, T., Rattanasawad, T., Wongpatikaseree, K., Lim, A.O., Tan, Y., Assawamakin, A.: OAM: an ontology application management framework for simplifying ontology-based semantic web application development. Int. J. Softw. Eng. Knowl. Eng. 26(1), 115–145 (2016)

    Article  Google Scholar 

  5. Horsman, D., Kendon, V., Stepney, S.: The natural science of computing. Commun. ACM 31–34. https://doi.org/10.1145/3107924. http://doi.acm.org/10.1145/3107924

    Article  Google Scholar 

  6. Fitzek, F.H., Katz, M.D.: Mobile Clouds: Exploiting Distributed Resources in Wireless, Mobile and Social Networks. Wiley, New York (2013)

    Google Scholar 

  7. Brody, P., Pureswaran, V.: Device Democracy: Saving the Future of the Internet of Things. IBM (2014)

    Google Scholar 

  8. Chih-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., Pan, Z.: Toward green and soft: a 5G perspective. IEEE Commun. Mag. 52(2), 66–73 (2014)

    Article  Google Scholar 

  9. Conti, M., Giordano, S.: Mobile ad hoc networking: milestones, challenges, and new research directions. IEEE Commun. Mag. 52(1), 85–96 (2014)

    Article  Google Scholar 

  10. Trifunovic, S., Kouyoumdjieva, S.T., Distl, B., Pajevic, L., Karlsson, G., Plattner, B.: A decade of research in opportunistic networks: challenges, relevance, and future directions. IEEE Commun. Mag. 55(1), 168–173 (2017)

    Article  Google Scholar 

  11. Liu, X., Li, Z., Yang, P., Dong, Y.: Information-centric mobile ad hoc networks and content routing: a survey. Ad Hoc Netw. 58, 255–268 (2017)

    Article  Google Scholar 

  12. Dressler, F.: Self-organization in Ad hoc Networks: Overview and Classification, vol. 7, pp. 1–12. Department of Computer Science, University of Erlangen (2006)

    Google Scholar 

  13. Prehofer, C., Bettstetter, C.: Self-organization in communication networks: principles and design paradigms. IEEE Commun. Mag. 43(7), 78–85 (2005)

    Article  Google Scholar 

  14. Fernández, M.: Models of Computation: An Introduction to Computability Theory. Springer Science & Business Media (2009)

    Google Scholar 

  15. Perrinel, M.: On context semantics and interaction nets. In: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), p. 73. ACM (2014)

    Google Scholar 

  16. Dressler, F.: Self-Organization in Sensor and Actor Networks. Wiley, New York (2008)

    Google Scholar 

  17. Chandra, T.B., Dwivedi, A.K.: Programming languages for wireless sensor networks: a comparative study. In: 2nd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1702–1708. IEEE (2015)

    Google Scholar 

  18. Sugihara, R., Gupta, R.K.: Programming models for sensor networks: a survey. ACM Trans. Sens. Netw. (TOSN) 4(2), 8 (2008)

    Google Scholar 

  19. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for networked sensors. ACM SIGOPS Oper. Syst. Rev. 34(5), 93–104 (2000)

    Article  Google Scholar 

  20. Mottola, L., Picco, G.P.: Programming wireless sensor networks: fundamental concepts and state of the art. ACM Comput. Surv. (CSUR) 43(3), 19 (2011)

    Article  Google Scholar 

  21. Cheong, E., Liebman, J., Liu, J., Zhao, F.: TinyGALS: a programming model for event-driven embedded systems. In: Proceedings of the 2003 ACM Symposium on Applied Computing, pp. 698–704 (2003

    Google Scholar 

  22. Greenstein, B., Kohler, E., Estrin, D.: A sensor network application construction kit (SNACK). In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems ACM, pp. 69–80 (2004)

    Google Scholar 

  23. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions. NSDI 4, 3 (2004)

    Google Scholar 

  24. McCartney, W.P., Sridhar, N.: Abstractions for safe concurrent programming in networked embedded systems. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, pp. 167–180. ACM (2006)

    Google Scholar 

  25. Newton, R., Welsh, M., et al.: Building up to macroprogramming: an intermediate language for sensor networks. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, p. 6. IEEE Press (2005)

    Google Scholar 

  26. Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor networks. ACM Sigmod Rec. 31(3), 9–18 (2002)

    Article  Google Scholar 

  27. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query processor for sensor networks. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 491–502. ACM (2003)

    Google Scholar 

  28. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming wireless sensor networks using Kairos. In: International Conference on Distributed Computing in Sensor Systems, pp. 126–140. Springer (2005)

    Google Scholar 

  29. Fok, C.L., Roman, G.C., Lu, C.: Rapid development and flexible deployment of adaptive wireless sensor network applications. In: 25th IEEE International Conference on Distributed Computing Systems, Proceedings. ICDCS, pp. 653–662 (2005)

    Google Scholar 

  30. Fok, C.L., Roman, G.C., Lu, C.: Agilla: a mobile agent middleware for sensor networks (2006)

    Google Scholar 

  31. Li, S., Lin, Y., Son, S.H., Stankovic, J.A., Wei, Y.: Event detection services using data service middleware in distributed sensor networks. Telecommun. Syst. 26(2–4), 351–368 (2004)

    Article  Google Scholar 

  32. Loo, J., Mauri, J.L., Ortiz, J.H.: Mobile Ad hoc Networks: Current Status and Future Trends. CRC Press, New York (2016)

    Book  Google Scholar 

  33. Qiu, T., Chen, N., Li, K., Qiao, D., Fu, Z.: Heterogeneous ad hoc networks: architectures, advances and challenges. Ad Hoc Netw. 55, 143–152 (2017)

    Article  Google Scholar 

  34. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. Wirel. Commun. Mob. Comput. 2(5), 483–502 (2002)

    Article  Google Scholar 

  35. Zhang, Y., Zheng, J., Chen, H.H.: Cognitive Radio Networks: Architectures, Protocols, and Standards. CRC Press, New York (2016)

    Google Scholar 

  36. Dressler, F.: Self-Organization in Sensor and Actor Networks. Wiley (2008)

    Google Scholar 

  37. Gershenson, C.: Design and control of self-organizing systems. CopIt ArXives (2007)

    Google Scholar 

  38. Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., Bettstetter, C.: Drone networks: communications, coordination, and sensing. Ad Hoc Netw. 68(1–15) (2018)

    Article  Google Scholar 

  39. Galati, A.: Delay Tolerant Network (2010)

    Google Scholar 

  40. Yang, K.: Principles Design and Applications (2014)

    Google Scholar 

  41. Dressler, F., Akan, O.B.: A survey on bio-inspired networking. Comput. Netw. 54(6), 881–900 (2010)

    Article  Google Scholar 

  42. Jones, A.J., Artikis, A., Pitt, J.: The design of intelligent socio-technical systems. Artif. Intell. Rev. 39(1), 5–20 (2013)

    Article  Google Scholar 

  43. Pureswaran, V., Brody, P.: Device Democracy: Saving the Future of the Internet of Things. IBM Corporation (2015)

    Google Scholar 

  44. Wortmann, F., Flüchter, K.: Internet of Things. Bus. Inf. Syst. Eng. 57(3), 221–224 (2015)

    Article  Google Scholar 

  45. Dell, P.F.: Family Process vol. 21, no. 1, p. 21 (1982)

    Google Scholar 

  46. Dawes, R.M.: Social dilemmas. Annu. Rev. Psychol. 31(1), 169–193 (1980)

    Article  Google Scholar 

  47. Kollock, P.: Social dilemmas: the anatomy of cooperation. Ann. Rev. Sociol. 24(1), 183–214 (1998)

    Article  Google Scholar 

  48. McMurray, J.: The paradox of information and voter turnout. Pub. Choice 165(1-2), 13–23 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín F. Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sánchez, J.F., Quiñones, J., Corredor, J.M. (2019). Interaction Net as a Representation Model of a Programming Language. In: Alor-Hernández, G., Sánchez-Cervantes, J., Rodríguez-González, A., Valencia-García, R. (eds) Current Trends in Semantic Web Technologies: Theory and Practice. Studies in Computational Intelligence, vol 815. Springer, Cham. https://doi.org/10.1007/978-3-030-06149-4_3

Download citation

Publish with us

Policies and ethics