Skip to main content

Surface Modification of Gold Nanoparticles for Targeted Drug Delivery

  • Chapter
  • First Online:

Abstract

Gold nanoparticles (AuNPs) are the most widely studied and used inorganic nanoparticles in biomedical researches and applications, due to their controllable shape and size, biological inertia, and optical and photothermal therapeutic properties. Besides the shape and size, surface property is also a critical factor that influences the performance of AuNPs in vivo, especially for targeted drug delivery using AuNPs as the carriers. Two approaches, noncovalent and covalent interactions, are commonly employed to modify the surface of AuNPs. Each of them has advantages and disadvantages. In this chapter, we focus on these two kinds of surface modification methods and their applications in regulating the properties and performance of AuNP-based nanosystems for targeted drug delivery. It provides valuable reference and guide to implement modification of the surface for nanomaterials and realize the unique functions in diagnosis and treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yeh, Y.-C., Creran, B., & Rotello, V. M. (2012). Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 4, 1871–1880.

    Article  CAS  PubMed  Google Scholar 

  2. Biju, V. P. (2014). Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chemical Society Reviews, 45, 744–764.

    Article  Google Scholar 

  3. Giljohann, D. A., Seferos, D. S., Daniel, W. L., Massich, M. D., Patel, P. C., & Mirkin, C. A. (2010). Gold nanoparticles for biology and mdicine. Angewandte Chemie, International Edition, 49, 3280–3294.

    Article  CAS  Google Scholar 

  4. Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112, 2739–2779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, N., Zhao, P., & Astruc, D. (2014). Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angewandte Chemie, International Edition, 53, 1756–1789.

    Article  CAS  Google Scholar 

  6. Perrault, S. D., & Chan, W. C. W. (2009). Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. Journal of the American Chemical Society, 131, 17042–17043.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, T., Xu, S., Zhao, T., Zhu, L., Wei, D., Li, Y., Zhang, H., & Zhao, C. (2012). Gold nanocluster-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. ACS Applied Materials and Interfaces, 4, 5766–5774.

    Article  CAS  PubMed  Google Scholar 

  8. He, L., Chen, T., You, Y., Hu, H., Zheng, W., Kwong, W.-L., Zou, T., & Che, C.-M. (2014). A cancer-targeted nano system for delivery of gold (III) complexes: Enhanced selectivity and apoptosis-inducing efficacy of a gold (III) porphyrin complex. Angewandte Chemie, International Edition, 53, 12532–12536.

    CAS  Google Scholar 

  9. Jang, H., Ryoo, S.-R., Kostarelos, K., Hanb, S. W., & Mina, D.-H. (2013). The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials, 34, 3503–3510.

    Article  CAS  PubMed  Google Scholar 

  10. Verma, H. N., Singh, P., & Chavan, R. M. (2014). Gold nanoparticle: Synthesis and characterization. Veterinary World, 7, 72–77.

    Article  CAS  Google Scholar 

  11. Brown, S. D., Nativo, P., Smith, J.-A., Stirling, D., Edwards, P. R., Venugopal, B., Flint, D. J., Plumb, J. A., Graham, D., & Wheate, N. J. (2010). Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. Journal of the American Chemical Society, 132, 4678–4684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yeh, Y.-C., Creran, B., & Rotello, V. M. (2012). Gold nanoparticles: Preparation, properties, and applications in bio nanotechnology. Nanoscale, 4, 1871–1880.

    Article  CAS  PubMed  Google Scholar 

  13. Park, J., Brust, T. F., Lee, H. J., Lee, S. C., Watts, V. J., & Yeo, Y. (2014). Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano, 8, 3347–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adams, S. A., Hauser, J. L., Allen, A. C., Lindquist, K. P., Ramirez, A. P., Oliver, S., & Zhang, J. Z. (2018). Fe3O4@SiO2 nanoparticles functionalized with gold and poly(vinylpyrrolidone) for bio-separation and sensing applications. ACS Applied Nano Materials, 1, 1406–1412.

    Article  CAS  Google Scholar 

  15. Hu, J., Wu, T., Zhang, G., & Liu, S. (2012). Efficient synthesis of single gold nanoparticle hybrid amphiphilic triblock copolymers and their controlled self-assembly. Journal of the American Chemical Society, 134, 7624–7627.

    Article  CAS  PubMed  Google Scholar 

  16. Ghiassian, S., Gobbo, P., & Workentin, M. S. (2015). Water-soluble maleimide-modified gold nanoparticles (AuNPs) as a platform for cycloaddition reactions. European Journal of Organic Chemistry, (24), 5438–5447.

    Google Scholar 

  17. Kalies, S., Gentemann, L., Schomaker, M., Heinemann, D., Ripken, T., & Meyer, H. (2014). Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation. Biomedical Optics Express, 5, 2686–2696.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li, X., Guo, J., Asong, J., Wolfert, M. A., & Boons, G.-J. (2011). Multifunctional surface modification of gold-stabilized nanoparticles by bioorthogonal reactions. Journal of the American Chemical Society, 133, 11147–11153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lipka, J., Behnke, M. S., Sperling, R. A., Wenk, A., Takenaka, S., Schleh, C., Kissel, T., Parak, W. J., & Kreyling, W. G. (2010). Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 31, 6574–6581.

    Article  CAS  PubMed  Google Scholar 

  20. Kodiyan, A., Silva, E. A., Kim, J., Aizenberg, M., & Mooney, D. J. (2012). Surface modification with alginate-derived polymers for stable, protein-repellent, long-circulating gold nanoparticles. ACS Nano, 6, 4796–4805.

    Article  CAS  PubMed  Google Scholar 

  21. Doane, T. L., & Burda, C. (2012). The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chemical Society Reviews, 41, 2885–2911.

    Article  CAS  PubMed  Google Scholar 

  22. Caragheorgheopol, A., & Chechik, V. (2008). Mechanistic aspects of ligand exchange in au nanoparticles. Physical Chemistry Chemical Physics, 10, 5029–5041.

    Article  CAS  PubMed  Google Scholar 

  23. Veiseh, O., Kievit, F. M., Gunn, J. W., Ratner, B. D., & Zhanga, M. (2009). A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials, 30, 649–657.

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Y., Xianyu, Y., & Jiang, X. (2017). Surface modification of gold nanoparticles with small molecules for biochemical analysis. Accounts of Chemical Research, 50, 310–319.

    Article  CAS  PubMed  Google Scholar 

  25. Paciotti, G. F., Kingston, F. G. I., & Tamarkin, L. (2006). Colloidal gold nanoparticles: A novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Development Research, 67, 47–54.

    Article  CAS  Google Scholar 

  26. Ding, Y., Jiang, Z., Saha, K., Kim, C. S., Kim, S. T., Landis, R. F., & Rotello, V. M. (2014). Gold nanoparticles for nucleic acid delivery. Molecular Therapy, 22, 1075–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang, J.-J., Zhou, Y.-Y., Wu, J., & Ding, Y. (2014). Gold nanoparticle-based drug delivery platform for antineoplastic chemotherapy. Current Drug Metabolism, 15, 620–631.

    Article  CAS  PubMed  Google Scholar 

  28. Bera, K., Maiti, S., Maity, M., Mandal, C., & Maiti, N. C. (2018). Porphyrin−gold nanomaterial for efficient drug delivery to cancerous cells. ACS Omega, 3, 4602–4619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khandelia, R., Jaiswal, A., Ghosh, S. S., & Chattopadhyay, A. (2013). Gold nanoparticle–protein agglomerates as versatile nanocarriers for drug delivery. Small, 9, 3494–3505.

    Article  CAS  PubMed  Google Scholar 

  30. Guo, S., Huang, Y., Jiang, Q., Sun, Y., Deng, L., Liang, Z., Du, Q., Xing, J., Zhao, Y., Wang, P. C., Dong, A., & Liang, X.-J. (2010). Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano, 4, 5505–5511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fytianos, K., Rodriguez-Lorenzo, L., Clift, M. J., Blank, F., Vanhecke, D., von Garnier, C., Petri-Fink, A., & Rothen-Rutishauser, B. (2015). Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomedicine, 11, 633–644.

    Article  CAS  PubMed  Google Scholar 

  32. Schäffler, M., Sousa, F., Wenk, A., Sitia, L., Hirn, S., Schleh, C., Haberl, N., Violatto, M., Canovi, M., Andreozzi, P., Salmona, M., Bigini, P., Kreyling, W. G., & Krol, S. (2014). Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials, 35, 3455–3466.

    Article  PubMed  Google Scholar 

  33. Alexander, C. M., Hamner, K. L., Maye, M. M., & Dabrowiak, J. C. (2014). Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Bioconjugate Chemistry, 25, 1261–1271.

    Article  CAS  PubMed  Google Scholar 

  34. Heuer-Jungemann, A., Kirkwood, R., El-Sagheer, A. H., Brown, T., & Kanaras, A. G. (2013). Copper-free click chemistry as an emerging tool for the programmed ligation of DNA-functionalised gold nanoparticles. Nanoscale, 5, 7209–7212.

    Article  CAS  PubMed  Google Scholar 

  35. Kyriazi, M.-E., Giust, D., El-Sagheer, A. H., Lackie, P. M., Muskens, O. L., Brown, T., & Kanaras, A. G. (2018). Multiplexed mRNA sensing and combinatorial-targeted drug delivery using DNA-gold nanoparticle dimers. ACS Nano, 12, 3333–3340.

    Article  CAS  PubMed  Google Scholar 

  36. Roca, M., & Haes, A. J. (2008). Probing cells with noble metal nanoparticle aggregates. Nanomedicine UK, 3, 555–565.

    Article  CAS  Google Scholar 

  37. Chen, W., He, S., Pan, W. Y., Jin, Y., Zhang, W., & Jiang, X. Y. (2010). Strategy for the modification of electrospun fibers that allows diverse functional groups for biomolecular entrapment. Chemistry of Materials, 22, 6212–6214.

    Article  CAS  Google Scholar 

  38. Liu, D. B., Qu, W. S., Chen, W. W., Zhang, W., Wang, Z., & Jiang, X. Y. (2010). Highly sensitive, colorimetric detection of mercury (II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Analytical Chemistry, 82, 9606–9610.

    Article  CAS  PubMed  Google Scholar 

  39. Prisner, L., Bohn, N., Hahn, U., & Mews, A. (2017). Size dependent targeted delivery of gold nanoparticles modified with the IL-6R-specific aptamer AIR-3A to IL-6R-carrying cells. Nanoscale, 9, 14486–14498.

    Article  CAS  PubMed  Google Scholar 

  40. Dekiwadia, C. D., Lawrie, A. C., & Fecondo, J. V. (2012). Peptide-mediated cell penetration and targeted delivery of gold nanoparticles into lysosomes. Journal of Peptide Science, 18, 527–534.

    Article  CAS  PubMed  Google Scholar 

  41. Frigell, J., García, I., Gómez-Vallejo, V., Llop, J., & Penadés, S. (2014). 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: Preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. Journal of the American Chemical Society, 136, 449–457.

    Article  CAS  PubMed  Google Scholar 

  42. Bao, Q.-Y., Geng, D.-D., Xue, J.-W., Zhou, G., Gu, S.-Y., Ding, Y., & Zhang, C. (2013). Glutathione-mediated drug release from tiopronin-conjugated gold nanoparticles for acute liver injury therapy. International Journal of Pharmaceutics, 446, 112–118.

    Article  CAS  PubMed  Google Scholar 

  43. Ding, Y., Zhou, Y.-Y., Chen, H., Geng, D.-D., Wu, D.-Y., Hong, J., Shen, W.-B., Hang, T.-J., & Zhang, C. (2013). The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials, 34, 10217–10227.

    Article  CAS  PubMed  Google Scholar 

  44. Gao, Y.-Y., Chen, H., Zhou, Y.-Y., Wang, L.-T., Hou, Y., Xia, X.-H., & Ding, Y. (2017). Intraorgan targeting of gold conjugates for precise liver cancer treatment. ACS Applied Materials and Interfaces, 9, 31458–31468.

    Article  CAS  PubMed  Google Scholar 

  45. Wu, D.-Y., Wang, H.-S., Hou, X.-S., Chen, H., Ma, Y., Hou, Y., Hong, J., & Ding, Y. (2018). Effects of gold core size on regulating the performance of doxorubicin-conjugated gold nanoparticles. Nano Research, 11, 3396–3410.

    Article  CAS  Google Scholar 

  46. Cui, T., Liang, J.-J., Chen, H., Geng, D.-D., Jiao, L., Yang, J.-Y., Qian, H., Zhang, C., & Ding, Y. (2017). The Performance of doxorubicin-conjugated gold nanoparticles: Regulation of drug location. ACS Applied Materials and Interfaces, 9, 8569–8580.

    Article  CAS  PubMed  Google Scholar 

  47. Ruan, S., Yuan, M., Zhang, L., Hu, G., Chen, J., Cun, X., Zhang, Q., Yang, Y., He, Q., & Gao, H. (2015). Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials, 37, 425–435.

    Article  CAS  PubMed  Google Scholar 

  48. Gibson, J. D., Khanal, B. P., & Zubarev, E. R. (2007). Paclitaxel-functionalized gold nanoparticles. Journal of the American Chemical Society, 129, 11653–11661.

    Article  CAS  PubMed  Google Scholar 

  49. Tan, J., Cho, T. J., Tsai, D.-H., Liu, J., Pettibone, J. M., You, R., Hackley, V. A., & Zachariah, M. R. (2018). Surface modification of cisplatin-complexed gold nanoparticles and its influence on colloidal stability, drug loading, and drug release. Langmuir, 34, 154–163.

    Article  CAS  PubMed  Google Scholar 

  50. Jang, H., Ryoo, S.-R., Kostarelos, K., Han, S. W., & Min, D.-H. (2013). The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials, 34, 3503–3510.

    Article  CAS  PubMed  Google Scholar 

  51. Hua, C., Zhang, W. H., De Almeida, S. R., Ciampi, S., Gloria, D., Liu, G., Harper, J. B., & Gooding, J. J. (2012). A novel route to copper (II) detection using ‘click’ chemistry-induced aggregation of gold nanoparticles. Analyst, 137, 82–86.

    Article  CAS  PubMed  Google Scholar 

  52. Hudlikar, M. S., Li, X., Gagarinov, I. A., Kolishetti, N., Wolfert, M. A., & Boons, G.-J. (2016). Controlled multi-functionalization facilitates targeted delivery of nanoparticles to cancer cells. Chemistry, 22, 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  53. Finetti, C., Sola, L., Pezzullo, M., Prosperi, D., Colombo, M., Riva, B., Avvakumova, S., Morasso, C., Picciolini, S., & Chiari, M. (2016). Click chemistry immobilization of antibodies on polymer coated gold nanoparticles. Langmuir, 32, 7435–7441.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mugaka, B.P., Hu, Y., Ma, Y., Ding, Y. (2019). Surface Modification of Gold Nanoparticles for Targeted Drug Delivery. In: Pathak, Y. (eds) Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-030-06115-9_20

Download citation

Publish with us

Policies and ethics