Skip to main content

Chromatographic Separation of Amino Acids

  • Chapter
  • First Online:
Applications of Ion Exchange Materials in Biomedical Industries

Abstract

Amino acids are very important in our daily life as energy sources and have several functions in metabolism since amino acids are the main key elements for the formation of proteins and peptides. All the amino acids contain a chiral carbon atom and they exist in d- and l-forms except one amino acids, i.e., glycine. Depending upon their d- or l-form, they have different biological activities in living systems. It became evident that the potential biological or pharmacological applications of amino acids are greatly restricted to the one form of the enantiomers. So, the development of methods for their separation has attracted the interest of researchers. In this chapter, we have briefly discussed the separation of amino acids with the help of different chromatographic techniques such as liquid chromatography (LC), gas chromatography (GC), thin-layer chromatography (TLC), and countercurrent chromatography (CCC). Additionally, the role of capillary electrophoresis (CE) has also been discussed toward amino acid separation. To improve the sensitivity, specificity, and applications, chromatographic techniques have been coupled with other analytical techniques, known as hyphenated techniques. In this chapter, the classification of hyphenated techniques and their roles is also discussed in addition to the advantages of chromatographic techniques over the other separation techniques. Chromatographic techniques are simple in handling, fast in the analysis, and can be used for small as well as large-scale separations with good separation efficiency and high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

β-CD:

β-cyclodextrin

(S)-NIFE:

(S)-N-(4-nitrophenoxycarbonyl)-l-phenylalanine-2-methoxyethyl ester

ABD-F:

4-aminosulphonyl-7-fluro-2,1,3-benzoxadiazol

ACC:

Adsorption column chromatography

ACN:

Acetonitrile

Ala:

Alanine

Arg:

Arginine

Asn:

Asparagine

Asp:

Aspartic acid

CCC:

Counter current chromatography

CE:

Capillary electrophoresis

CEC:

Capillary electro chromatography

CE-MS:

Capillary electrophoresis-mass spectrometry

CGE:

Capillary gel electrophoresis

CI:

Chemical ionization

CIEF:

Capillary isoelectric focusing

CITP:

Capillary isotachophoresis

CSF:

Cerebrospinal fluid

CSP:

Chiral stationary phase

Cys:

Cysteine

CZE:

Capillary zone electrophoresis

DBD-F:

4-(N,N-dimethylaminosulphonyl)-7-fluoro-2,1,3-benzoxadiazole

DEX:

Dextrin

DM-β-CD:

Heptakis (2,6-di-O-methyl)-β-cyclodextrin

EC:

Ethyl chloroformate

EI:

Electron impact ionization

ESI-MS:

Electron spray ionization-mass spectrometry

FID:

Flame ionization detection

FITC:

Fluorescein isothiocyanate

FLEC:

(+)-1-(9-lluorenyl) ethyl chloroformate

FMOC:

Fluorenylmethyloxycarbonyl chloride

GC:

Gas chromatography

GC-MS:

Gas chromatography mass spectrometry

GLC:

Gas liquid chromatography

Gln:

Glutamine

Glu:

Glutamic acid

Gly:

Glycine

GSC:

Gas-solid chromatography

His:

Histidine

HP-β-CD:

Hydroxypropyl-β-cyclodextrin

HPA-β-CD:

6-monodeoxy-6-mono (3-hydroxy)-propylamino-β-cyclodextrin

HPLC:

High performance liquid chromatography

IE-HPLC:

Ion exchange high performance liquid chromatography

Ile:

Isoleucine

IR:

Infrared spectroscopy

LC:

Liquid chromatography

LC-MS:

Liquid chromatography-mass spectrometry

LC-MS-MS:

Liquid chromatography-mass spectrometry-mass spectrometry

Leu:

Leucine

LIF:

Laser induced fluroscence

LLC:

Liquid liquid chromatography

Lys:

Lysine

Marfey’s reagent:

N-α-(2, 4-dinitro-5-fluorophenyl)-l-alaninamide

MEKC:

Micellar electrokinetic chromatography

MeOH:

Methanol

Met:

Methionine

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

MTFMPA:

Methoxy trifluoromethylphenylacetyl chloride

NAC:

N-acetyl-l cysteine

NBD:

4-fluoro-7-nitrobenzofurazan

NBD-F:

4-fluro-7-nitro-2,1,3-benzoxadiazole

NBE:

n-butyl esters

NDA:

Naphthalene dicarboxaldehyde

NMR:

Nuclear magnetic resonance

NpF:

N-heptaflurobutylryl

Npf:

N-pentafluoropropionyl

NP-HPLC:

Normal phase high performance liquid chromatography

NRMC:

N-(R)-mandelyl-(S)-cysteine

N-Tfac:

N-trifluroacetyl

OPA:

o-phthaldialdehyde

OS-γ-CD:

Octakis (2,3-dihydroxy-6-O-sulfo)-γ-cyclodextrin

PC:

Paper chromatography

PCC:

Partition column chromatography

Phe:

Phenylalanine

Pro:

Proline

RP-HPLC:

Reversed phase high performance liquid chromatography

RPPC:

Reversed phase partition chromatography

SC-HPLC:

Super critical high performance chromatography

SDS:

Sodium dodecyl sulphate

SE-HPLC:

Size exclusion high performance liquid chromatography

Ser:

Serine

SIM:

Selected ion monitoring

SLC:

Solid liquid chromatography

TEA:

Triethanolamine

TEAA:

Tetra ethyl ammonium acetate

Thr:

Threonine

TLC:

Thin layer chromatography

TLC:

Thin layer chromatography

TM-β-CD:

Heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin

TOF:

Time of flight

TOFR:

Time of flight reflection

Trp:

Tryptophan

Try:

Tyrosine

UPLC-MS/MS:

Ultra-performance mass spectroscopy/mass spectroscopy

UV:

Ultraviolet

Val:

Valine

References

  1. Ferreira FD, Rodrigues AL (2008) Separation and purification of amino acids. Diss. Universidade do Porto, Portugal

    Google Scholar 

  2. Cesari M, Rossi GP, Sticchi D, Pessina AC (2005) Is homocysteine important as risk factor for coronary heart disease? Nutr Metab Cardiovasc Dis 15:140–147

    Article  PubMed  Google Scholar 

  3. Friedman M (1999) Chemistry, nutrition, and microbiology of d-amino acids. J Agric Food Chem 47:3457–3479

    Article  CAS  PubMed  Google Scholar 

  4. Bhushan R, Joshi S (1993) Resolution of enantiomers of amino acids by HPLC. Biomed Chromatogr 7:235–250

    Article  CAS  PubMed  Google Scholar 

  5. Pathak AK (2014) Stabilizing the zwitter-ionic form of amino acids in the gas phase: an ab initio study on the minimum number of solvents and ions. Chem Phys Lett 610:345–350

    Article  CAS  Google Scholar 

  6. Hoeprich PD (1965) Alanine: cyeloserine antagonism VI demonstration of d-alanine in the serum of guinea pigs and mice. J Biol Chem 240:1654–1660

    CAS  PubMed  Google Scholar 

  7. Bruckner H, Westhauser T (2003) Chromatographic determination of l- and d-amino acids in plants. Amino Acids 24:43–55

    Article  CAS  PubMed  Google Scholar 

  8. Patzold R, Bruckner H (2006) Gas chromatographic determination and mechanism of formation of d-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell. Amino Acids 31:63–72

    Article  CAS  PubMed  Google Scholar 

  9. Lupke M, Bruckner H (1991) Chiral phase capillary gas chromatography. Chromatographia 31:123–124

    Article  Google Scholar 

  10. Bruckner H, Erbe T (2000) Chromatographic determination of amino acid enantiomers in beers and raw materials used for their manufacture. J Chromatogr A 881:81–91

    Article  PubMed  Google Scholar 

  11. Rubio Barroso S, Santos Delgado MJ, Martin Olivar C, Polo Diez LM (2006) Indirect chiral HPLC determination and fluorimetric detection of d-amino acids in milk and oyster samples. J Dairy Sci 89:82–89

    Article  CAS  PubMed  Google Scholar 

  12. Ali Mohammed HS, Patzold Bruckner H (2010) Gas chromatographic determination of amino acid enantiomers in bottled and aged wines. Amino Acids 38:951–958

    Article  CAS  Google Scholar 

  13. Hamase K, Morikawa A, Etoh S, Tojo Y, Miyoshi Y, Zaitsu K (2009) Analysis of small amounts of d-amino acids and the study of their physiological functions in mammals. Anal Sci 25:961–968

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto A, Oka T (1997) Free d-aspartate and d-serine in the mammalian brain and periphery. Prog Neurobiol 52:325–353

    Article  CAS  PubMed  Google Scholar 

  15. Gogami Y, Okada K, Oikawa T (2011) High-performance liquid chromatography analysis of naturally occurring d-amino acids in sake. J Chromatogr B 879:3259–3267

    Article  CAS  Google Scholar 

  16. Martinez Rodriguez S, Martinez Gomez AI, Rodriguez Vico F, Clemente Jimenez JM, Heras Vazquez L, Javier F (2010) Natural occurrence and industrial applications of d-amino acids: an overview. Chem Biodivers 7:1531–1548

    Article  CAS  PubMed  Google Scholar 

  17. Konya Y, Bamba T, Fukusaki E (2015) Extra-facile chiral separation of amino acid enantiomers by LC-TOFMS analysis. J Biosci Bioeng 121:349–353

    Article  PubMed  CAS  Google Scholar 

  18. Skog DA, Holler FT, Neiman TA (5th ed) (1998) Principles of instrumental analysis. Harcourt Brace College Publisher, Orlando, pp 790, 906 & 947

    Google Scholar 

  19. Lorenzo MP, Dudzik D, Varas E, Gibellini M, Skotnicki M, Zorawski M, Garcia A (2015) Optimization and validation of a chiral GC–MS method for the determination of free d-amino acids ratio in human urine: application to a gestational diabetes mellitus study. J Pharm Biomed Anal 107:480–487

    Article  CAS  PubMed  Google Scholar 

  20. Bhushan R, Bruckner H (2004) Marfey’s reagent for chiral amino acid analysis: a review. Amino Acids 27:231–247

    Article  CAS  PubMed  Google Scholar 

  21. Frank H, Nicholson GJ, Bayer E (1977) Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. J Chromatogr Sci 15:174–176

    Article  CAS  PubMed  Google Scholar 

  22. Frank H, Nicholson GJ, Bayer E (1978) Enantiomer labelling, a method for the quantitative analysis of amino acids. J Chromatogr 167:187–196

    Article  CAS  PubMed  Google Scholar 

  23. Menestrina F, Grisales OJ, Castells CB (2016) Chiral analysis of derivatized amino acids from kefir by gas chromatography. Microchem J 128:267–273

    Article  CAS  Google Scholar 

  24. Husek P (1991) Rapid derivatization and gas chromatographic determination of amino acids. J Chromatogr 552:289–299

    Article  CAS  Google Scholar 

  25. Pollock GE (1967) Separation of amino acids by gas chromatography using new fluoro derivatives. Anal Chem 39:1194–1196

    Article  CAS  PubMed  Google Scholar 

  26. Fox S, Strasdeit H, Haasmann S, Bruckner H (2015) Gas chromatographic separation of stereoisomers of non-protein amino acids on modified γ-cyclodextrin stationary phase. J Chromatogr A 1411:101–109

    Article  CAS  PubMed  Google Scholar 

  27. Bertrand M, Chabin A, Brack A, Westall F (2008) Separation of amino acid enantiomers VIA chiral derivatization and non-chiral gas chromatography. J Chromatogr A 1180:131–137

    Article  CAS  PubMed  Google Scholar 

  28. Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K (1992) The presence of free d-serine in rat brain. FEBS Lett 296:33–36

    Article  CAS  PubMed  Google Scholar 

  29. Schurig V (1994) Enantiomer separation by gas chromatography on chiral stationary phases. J Chromatogr A 666:111–129

    Article  CAS  Google Scholar 

  30. Husek P (1991) Rapid derivatization and gas chromatographic determination of amino acids. J Chromatogr A 552:289–299

    Article  CAS  Google Scholar 

  31. Bruckner H, Lupke M (1991) Determination of amino acid enantiomers in orange juices by chiral phase capillary gas chromatography. Chromatographia 31:123–128

    Article  Google Scholar 

  32. Bruckner H, Hausch M (1993) Gas chromatographic characterization of free d-amino acids in the blood serum of patients with renal disorders and of healthy volunteers. J Chromatogr B Biomed Sci Appl 614:7–17

    Article  CAS  Google Scholar 

  33. Patzold R, Schieber A, Brückner H (2005) Gas chromatographic quantification of free d-amino acids in higher vertebrates. Biomed Chromatogr 19:466–473

    Article  PubMed  CAS  Google Scholar 

  34. Schieber A, Bruckner H (2001) Ascertainment of d-amino acids in germ free, gnotobiotic and normal laboratory rats. Biomed Chromatogr 15:257–262

    Article  PubMed  Google Scholar 

  35. Bart HJ, Kostova A (2007) Preparative chromatographic separation of amino acid racemic mixtures I. Adsorpt isotherms. Sep Purif Technol 54:340–348

    Article  CAS  Google Scholar 

  36. Fukushima T, Kato M, Santa T, Imai K (1995) Enantiomeric separation and sensitive determination of d, l-amino acids derivatized with fluorogenic benzofurazan reagents on pirkle type stationary phases. Biomed Chromatogr 9:10–17

    Article  CAS  PubMed  Google Scholar 

  37. Bhushan R, Joshi S (1993) Resolution of enantiomers of amino acids by HPLC. Biomed Chromatogr 7:235–250

    Article  CAS  PubMed  Google Scholar 

  38. Vera CM, Shock D, Dennis GR, Farrell W, Shalliker RA (2017) Comparing the selectivity and chiral separation of d- and l-fluorenylmethyloxycarbonyl chloride (FMOC) protected amino acids in analytical High Performance Liquid Chromatography and Supercritical Fluid Chromatography; evaluating throughput, economic and environmental impact. J Chromatogr A 1493:10–18

    Article  CAS  PubMed  Google Scholar 

  39. Toyo’oka T, Imai K (1984) New fluorogenic reagent having halogenobenzofurazan structure for thiols: 4-(aminosulfonyl)-7-fluoro-2, 1, 3-benzoxadiazole. Anal Chem 56:2461–2464

    Article  Google Scholar 

  40. Watanabe Y, Imai K (1981) High-performance liquid chromatography and sensitive detection of amino acids derivatized with 7-fluoro-4-nitrobenzo-2-oxa-1, 3-diazole. Anal Biochem 116:471–472

    Article  CAS  PubMed  Google Scholar 

  41. Toyo’oka T, Suzuki T, Saito Y, Uzu S, Imai K (1989a) Evaluation of benzofurazan derivatives as fluorogenic reagents for thiols and amines using high-performance liquid chromatography. Analyst 114:1233–1240

    Article  CAS  Google Scholar 

  42. Pirkle WH, Finn JM, Schreiner JL, Hamper BC (1981) A widely useful chiral stationary phase for the high-performance liquid chromatography separation of enantiomers. J A C S 103:3964–3966

    Article  CAS  Google Scholar 

  43. Oguri S, Nomura M, Fujita Y (2005) A new strategy for the selective determination of d-amino acids: enzymatic and chemical modifications for pre-column derivatization. J Chromatogr A 1078:51–58

    Article  CAS  PubMed  Google Scholar 

  44. Rubio-Barroso S, Santos-Delgado MJ, Martín-Olivar C, Polo-Díez LM (2006) Indirect chiral HPLC determination and fluorimetric detection of d-amino acids in milk and oyster samples. J Dairy Sci 89:82–89

    Article  CAS  PubMed  Google Scholar 

  45. Goodnough DB, Lutz MP, Wood PL (1995) Separation and quantification of d-and l-phosphoserine in rat brain using Nα-(2, 4-dinitro-5-fluorophenyl)-l-alaninamide (Marfey’s reagent) by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B: Biomed Sci and Appl 672:290–294

    Article  CAS  Google Scholar 

  46. Asakura S, Konno R (1997) Origin of d-serine present in urine of mutant mice lacking d-amino-acid oxidase activity. Amino Acids 12:213–223

    Article  CAS  Google Scholar 

  47. Nagata Y, Shoji R, Yonezawa S, Oda S (1997) Brain d-serine and tyrosine levels in ataxic mutant mice. Amino Acids 12:95–100

    Article  CAS  Google Scholar 

  48. Nagata Y, Borghi M, Fisher GH, D’Aniello A (1995) Free d-serine concentration in normal and Alzheimer human brain. Brain Res Bull 38:181–183

    Article  CAS  PubMed  Google Scholar 

  49. Guranda DT, Kudryavtsev PA, Khimiuk AY, Svedas VK (2005) Efficient enantiomeric analysis of primary amines and amino alcohols by high-performance liquid chromatography with precolumn derivatization using novel chiral SH-reagent N-(R)-mandelyl-(S)-cysteine. J Chromatogr A 1095:89–93

    Article  CAS  PubMed  Google Scholar 

  50. Peter A, Vekes E, Gera L, Stewart JM, Armstrong DW (2002) A comparison of the direct and indirect LC methods for separating enantiomers of unusual glycine and alanine amino acid analogues. Chromatographia 56:S79–S89

    Article  CAS  Google Scholar 

  51. Montes Bayon M, B’Hymer C, de Leon CP, Caruso JA (2001) Resolution of seleno-amino acid optical isomers using chiral derivatization and inductively coupled plasma mass spectrometric (ICP-MS) detection Presented at the 2001 European Winter Conference on Plasma Spectrochemistry, Lillehamer, Norway, February 4–8, 2001. JAAS 16:945–950

    Article  Google Scholar 

  52. Peter A, Vekes E, Torok G (2000) Application of (S)-N-(4-nitrophenoxycarbonyl) phenylalanine methoxyethyl ester as a new chiral derivatizing agent for proteinogenic amino acid analysis by high-performance liquid chromatography. Chromatographia 52:821–826

    Article  CAS  Google Scholar 

  53. Einarsson S, Josefsson B, Moeller P, Sanchez D (1987) Separation of amino acid enantiomers and chiral amines using precolumn derivatization with (+)-1-(9-fluorenyl) ethyl chloroformate and reversed-phase liquid chromatography. Anal Chem 59:1191–1195

    Article  CAS  PubMed  Google Scholar 

  54. Jin D, Miyahara T, Oe T, Toyo’oka T (1999) Determination of d-amino acids labeled with fluorescent chiral reagents, R (2)- and S(1)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazoles, in biological and food samples by liquid chromatography. Anal Biochem 269:124–132

    Article  CAS  PubMed  Google Scholar 

  55. Miyazawa T, Minowa H, Imagawa K, Yamada T (1997) Enantiomeric separation of non-protein amino acids by chiral ligand-exchange high-performance liquid chromatography. Anal lett 30:867–882

    Article  CAS  Google Scholar 

  56. Remsburg JW, Armstrong DW, Peter A, Toth G (2007) LC enantiomeric separation of unusual amino acids using cyclodextrin-based stationary phases. J Liq Chromatogr Relat Technol 31:219–230

    Article  CAS  Google Scholar 

  57. Berkecz R, Ilisz I, Misicka A, Tymecka D, Fulop F, Choi HJ, Peter A (2009) HPLC enantioseparation of β2-homoamino acids using crown ether-based chiral stationary phase. J Sep Sci 32:981–987

    Article  CAS  PubMed  Google Scholar 

  58. Lee T, Lee W, Hyun MH, Park JH (2010) Enantioseparation of α-amino acids on an 18-crown-6-tetracarboxylic acid-bonded silica by capillary electrochromatography. J Chromatogr A 1217:1425–1428

    Article  CAS  PubMed  Google Scholar 

  59. Peter A, Torok G, Armstrong DW (1998) High-performance liquid chromatographic separation of enantiomers of unusual amino acids on a teicoplanin chiral stationary phase. J Chromatogr A 793:283–296

    Article  CAS  PubMed  Google Scholar 

  60. Zhang X, Bao Y, Huang K, Barnett-Rundlett KL, Armstrong DW (2010) Evaluation of dalbavancin as chiral selector for HPLC and comparison with teicoplanin-based chiral stationary phases. Chirality: pharmacol Biol Chem Consequences Mol. Asymmetry 22:495–513

    Article  CAS  Google Scholar 

  61. Bechtold M, Felinger A, Held M, Panke S (2007) Adsorption behavior of a teicoplanin aglycone bonded stationary phase under harsh overload conditions. J Chromatogr A 1154:277–286

    Article  CAS  PubMed  Google Scholar 

  62. Peter A, Torok G, Armstrong DW, Toth G, Tourwe D (2000) High-performance liquid chromatographic separation of enantiomers of synthetic amino acids on a ristocetin a chiral stationary phase. J Chromatogr A 904:1–15

    Article  CAS  PubMed  Google Scholar 

  63. Peter ALL, Ferenc F, Daniel WA (2001) High-performance liquid chromatographic enantioseparation of β-amino acids. J Chromatogr A 926:229–238

    Article  CAS  PubMed  Google Scholar 

  64. Peter A, Vekes E, Arki A, Toure D, Lindner W (2003) Direct high-performance liquid chromatographic enantioseparation of α-substituted proline analogues on a quinine-derived chiral anion-exchanger stationary phase. J Sep Sci 26:1125–1132

    Article  CAS  Google Scholar 

  65. Miyazawa T, Shindo Y, Yamada T, Kuwata S (1993) Enantiomeric separation of N-protected non-protein amino acid esters by chiral high-performance liquid chromatography. Anal Lett 26:457–473

    Article  CAS  Google Scholar 

  66. Lee KA, Yeo S, Kim KH, Lee W, Kang JS (2008) Enantioseparation of N-fluorenylmethoxycarbonyl & #x03B1;-amino acids on polysaccharide-derived chiral stationary phases by reverse mode liquid chromatography. J Pharm Biomed Anal 46:914–919

    Article  CAS  PubMed  Google Scholar 

  67. Huanga XY, Peja D, Liua JF, Dia LD (2018) A review on chiral separation by counter-current chromatography: development, applications and future outlook. J Chromatogr A 1531:1–12

    Article  CAS  Google Scholar 

  68. Ito Y (2005) Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J Chromatogr A 1065:145–168

    Article  CAS  PubMed  Google Scholar 

  69. Gavioli E, Maier NM, Minguillon C, Lindner W (2004) Preparative enantiomer separation of dichlorprop with a cinchona-derived chiral selector employing centrifugal partition chromatography and high-performance liquid chromatography: a comparative study. Anal Chem 76:5837–5848

    Article  CAS  PubMed  Google Scholar 

  70. Sutherland I, Hewitson P, Ignatova S (2009) Scale-up of counter-current chromatography: demonstration of predictable isocratic and quasi-continuous operating modes from the test tube to pilot/process scale. J Chromatogr A 1216:8787–8792

    Article  CAS  PubMed  Google Scholar 

  71. Bhushan R, Martens J (1997) Direct resolution of enantiomers by impregnated TLC. Biomed Chromatogr II: 280–285

    Article  CAS  PubMed  Google Scholar 

  72. Sherma J, Fried B (3rd ed, revised and expanded) (2005) Handbook of Thin-Layer Chromatography. Lafayette College Easton, Pennsylvania, U.S.A

    Google Scholar 

  73. Bhushan R, Ali I (1987) Resolution of enantiomeric mixtures of phenylthiohydantoin amino acids on (+)-tartaric acid-impregnated silica gel plates. J Chromatogr 392:460–463

    Article  CAS  PubMed  Google Scholar 

  74. Borke ML, Kirch ER (1953) Separation of some of the opium alkaloids by surface chromatography. J Am Pharm Assoc Sci Ed 42:627–629

    Article  CAS  Google Scholar 

  75. Korzun BP, Dorfman L, Brody SM (1963) Separation of sonne alkaloids, steroids, and synthetic compounds by thin-layer chromatography. Anal Chem 35:950

    Article  CAS  Google Scholar 

  76. Sherma J, kowalska T (2006) Preparative layer chromatography

    Google Scholar 

  77. Alak A, Armstrong DW (1986) Thin-layer chromatographic separation of optical, geometrical, and structural isomers. Anal Chem 58:582–584

    Article  CAS  Google Scholar 

  78. Grinberg N, Weinstein S (1984) Enantiomeric separation of Dns-amino acids by reversed-phase thin layer chromatography. J Chromatogr A 303:251–255

    Article  CAS  Google Scholar 

  79. Virtanen R, Kivalo P (1969) Quantitative high-voltage zone electrophoresis method. Suomen Kemistilehti B 42:182

    CAS  Google Scholar 

  80. Jorgensen JW, Lukacs KD (1981) Zone electrophoresis is open-tubular glass capillaries. Anal Chem 53:1298–1302

    Article  Google Scholar 

  81. Whatley H (2001) Basic principles and modes of capillary electrophoresis. In: Clinical and forensic applications of capillary electrophoresis. Humana Press, Totowa, NJ pp 21–58

    Google Scholar 

  82. Tsunoda M, Kato M, Fukushima T, Santa T, Homma H, Yanai H, Soga T, Imai K (1999) Determination of aspartic acid enantiomers in bio-samples by capillary electrophoresis. Biomed Chromatogr 13:335–339

    Article  CAS  PubMed  Google Scholar 

  83. Thorsen G, Engstrom A, Josefsson B (1997) Enantiomeric determination of amino compounds with high sensitivity using the chiral reagents (+)- and (−)-1-(9-anthryl)-2-propyl chloroformate. J Chromatogr A 786:347–354

    Article  CAS  PubMed  Google Scholar 

  84. Teruhisa Ueda, Kitmura F, Mitchell R, Metcalf T, Kuwana T, Nakamoto A (1991) Chiral separation of naphthalene-2,3-dicarboxaldehyde-labeled amino acid enantiomers by cyclodextrin-modified micellar electrokinetic chromatography with laser-induced fluorescence detection. Anal Chem 63:2979–2981

    Article  Google Scholar 

  85. Cole OR, Sepaniak JM, Hinze WL (1990) Optimization of binaphthyl enantiomer separations by capillary zone electrophoresis using mobile phases containing bile salts and organic solvent. J High Resolut Chromatogr 13:579–582

    Article  CAS  Google Scholar 

  86. Otsuka K, Kawahara L, Tatekawa K, Terabe S (1991) Chiral separations by micellar electrokinetic chromatography with sodium N-dodecanoyl-l-valinate. J Chromatogr 559:209–214

    Article  CAS  Google Scholar 

  87. Kuhn R, Stoecklin F, Erni F (1992) Chiral separations by host-guest complexation with cyclodextrin and crown ether in capillary zone electrophoresis. Chromatographia 33:32–36

    Article  CAS  Google Scholar 

  88. Tsunoda M, Kato M, Fukushima T, Santa T, Homma H, Yanai H, Soga T, Imai K (1999) Determination of aspartic acid enantiomers in bio-samples by capillary electrophoresis. Biomed Chromatogr 13:335–339

    Article  CAS  PubMed  Google Scholar 

  89. Tsunoda M, Kato M, Fukushima T, Santa T, Homma H, Yanai H, Soga T, Imai K (1999) Determination of aspartic acid enantiomers in bio-samples by capillary electrophoresis. Biomed Chromatogr 13:335–339

    Article  CAS  PubMed  Google Scholar 

  90. Zhao S, Yuan H, Xiao D (2005) Detection of d-Serine in rat brain by capillary electrophoresis with laser induced fluorescence detection. J Chromatogr B A 822:334–338

    Article  CAS  Google Scholar 

  91. Wagner Z, Tabi T, Jako T, Zachar G, Csillag A, Szoko E (2012) Chiral separation and determination of excitatory amino acids in brain samples by CE-LIF using dual cyclodextrin system. Anal Bioanal Chem 404:2363–2368

    Article  CAS  PubMed  Google Scholar 

  92. Jako T, Szabo E, Tabi T, Zachar G, Csillag A, Szoko E (2014) Chiral analysis of amino acid neurotransmitters and neuromodulators in mouse brain by CE-LIF. Electrophoresis 35:2870–2876

    Article  CAS  PubMed  Google Scholar 

  93. Lorenzo MP, Villasenor A, Ramamoorthy A, Garcia A (2013) Optimization and validation of a capillary electrophoresis laser-induced fluorescence method for amino acids determination in human plasma: Application to bipolar disorder study. Electrophoresis 34:1701–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Singh NS, Paul RK, Sichler M, Moaddel R, Bernier M, Wainer IW (2012) Capillary electrophoresis–laser-induced fluorescence (CE-LIF) assay for measurement of intracellular d-serine and serine racemase activity. Anal Biochem 421:460–466

    Article  CAS  PubMed  Google Scholar 

  95. Zhao S, Liu YM (2001) Electrophoretic separation of tryptophan enantiomers in biological samples. Electrophoresis 22:2769–2774

    Article  CAS  PubMed  Google Scholar 

  96. Zhao S, Feng Y, LeBlanc MH, Liu YM (2001) Determination of free aspartic acid enantiomers in rat brain by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B Biomed Sci Appl 762:97–101

    Article  CAS  PubMed  Google Scholar 

  97. Li H, Li C, Yan ZY, Yang J, Chen H (2010) Simultaneous monitoring multiple neurotransmitters and neuromodulators during cerebral ischemia/reperfusion in rats by microdialysis and capillary electrophoresis. J Neurosci Methods 189:162–168

    Article  CAS  PubMed  Google Scholar 

  98. Fradi I, Servais AC, Lamalle C, Kallel M, Abidi M, Crommen J, Fillet M (2012) Chemo-and enantio-selective method for the analysis of amino acids by capillary electrophoresis with in-capillary derivatization. J Chromatogr A 1267:121–126

    Article  CAS  PubMed  Google Scholar 

  99. Londhe SV, Mulgund SV, Chitre TS, Mallade PS, Barival JB, Jain KS (2008) Hyphenated techniques in analytical world. Indian J Pharm educ Res dec 42:4

    Google Scholar 

  100. Kalpesh NP, Jayvadan KP, Manish PP, Ganesh CR, Hitesh AP (2010) Introduction to hyphenated techniques and their applications in pharmacy. Pharm Methods 1:2–13

    Article  Google Scholar 

  101. Phalke P, Kavade S (2013) Review on hyphenated techniques. Int J Chem Stud 1:157–165

    Google Scholar 

  102. Singh S, Handa T, Narayanam M, Sahu A, Junwal M, Shah RP (2012) A critical review on the use of modern sophisticated hyphenated tools in the characterization of impurities and degradation products. J Pharm Biomed Anal 69:148–173

    Article  CAS  PubMed  Google Scholar 

  103. Guo X, Lankmayr E (2012) Hyphenated techniques in gas chromatography. In: Advanced gas chromatography-progress in agricultural, biomedical and industrial applications. InTech

    Google Scholar 

  104. Bruckner H, Schieber A (2000) Determination of free d-amino acids in mammalia by chiral gas chromatography-mass spectrometry. J Sep Sci 23:576–582

    CAS  Google Scholar 

  105. Culea M, Iordache AM, Horj E, Mesaros C, Bleiziffer R (2016) GC-MS Methods for amino acids determination in different biological extracts. Studia Ubb Chemia LXI 61:213–222

    CAS  Google Scholar 

  106. Patzold R, Schieber A, Brückner H (2005) Gas chromatographic quantification of free d-amino acids in higher vertebrates. Biomed Chromatogr 19:466–473

    Article  PubMed  CAS  Google Scholar 

  107. Schieber A, Bruckner H (2001) Ascertainment of d-amino acids in germ free, gnotobiotic and normal laboratory rats. Biomed Chromatogr 15:257–262

    Article  PubMed  Google Scholar 

  108. Hashimoto A, Nishikawa T, Oka T, Hayashi T, Takahashi K (1993) Widespread distribution of free d-aspartate in rat periphery. FEBS Lett 331:4–8

    Article  CAS  PubMed  Google Scholar 

  109. Hasegawa H, Shinohara Y, Masuda N, Hashimoto T, Ichida K (2011) Simultaneous determination of serine enantiomers in plasma using mosher’s reagent and stable isotope dilution gas chromatography-mass spectrometry. J Mass Spectrom 46:502–507

    Article  CAS  PubMed  Google Scholar 

  110. Waldhier MC, Almstetter MF, Nurnberger N, Gruber MA, Dettmer K, Oefner PJ (2011) Improved enantiomer resolution and quantification of free d-amino acids in serum and urine by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A 1218:4537–4544

    Article  CAS  PubMed  Google Scholar 

  111. Patzold R, Schieber A, Bruckner H (2005) Gas chromatographic quantification of free d-amino acids in higher vertebrates. Biomed Chromatogr 19:466–473

    Article  PubMed  CAS  Google Scholar 

  112. Bruckner H, Schieber A (2001) Determination of amino acid enantiomers in human urine and blood serum by gas chromatography-mass spectrometry. Biomed Chromatogr 15:166–172

    Article  CAS  PubMed  Google Scholar 

  113. Schieber A, Bruckner H, Rupp-Classen M, Nowitzki-Gfimm S, Classen HG (1997) Evaluation of d-amino acid levels in rat by gas chromatography-selected ion monitoring mass spectrometry: no evidence for subacute toxicity of orally fed d-proline and d-aspartic acid. J Chromatogr B Biomed Sci Appl 69:1–12

    Article  Google Scholar 

  114. Jin D, Miyahara T, Oe T, Toyo’oka T (1999) Determination of d-amino acids labeled with fluorescent chiral reagents, R (−)-and S (+)-4-(3-Isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2, 1, 3-benzoxadiazoles, in biological and food samples by liquid chromatography. Anal Biochem 269:124–132

    Article  CAS  PubMed  Google Scholar 

  115. Konya Y, Bamba T, Fukusaki E (2016) Extra-facile chiral separation of amino acid enantiomers by LC-TOFMS analysis. J Biosci Bioeng 121:349–353

    Article  CAS  PubMed  Google Scholar 

  116. Rojas C, Alt J, Ator NA, Thomas AG, Wu Y, Hin N, Slusher BS (2016) d-amino-acid oxidase inhibition increases d-serine plasma levels in mouse but not in monkey or dog. Neuropsychopharmacology 41:1610

    Article  CAS  PubMed  Google Scholar 

  117. Sakamoto T, Kuwabara R, Takahashi S, Onozato M, Ichiba H, Iizuka H, Fukushima T (2016) Determination of d-serine in human serum by LC-MS/MS using a triazole-bonded column after pre-column derivatization with (S)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2, 1, 3-benzoxadiazole. Anal Bioanal Chem 408:517–526

    Article  CAS  PubMed  Google Scholar 

  118. Xie Y, Alexander GM, Schwartzman RJ, Singh N, Torjman MC, Goldberg ME, Moaddel R (2014) Development and validation of a sensitive LC–MS/MS method for the determination of d-serine in human plasma. J Pharm Biomed Anal 89:1–5

    Article  CAS  PubMed  Google Scholar 

  119. Nagata Y, Higashi M, Ishii Y, Sano H, Tanigawa M, Nagata K, Urade M (2006) The presence of high concentrations of free d-amino acids in human saliva. Life Sci 78:1677–1681

    Article  CAS  PubMed  Google Scholar 

  120. Ohnuma T, Sakai Y, Maeshima H, Hatano T, Hanzawa R, Abe S, Arai H (2008) Changes in plasma glycine, L-serine, and d-serine levels in patients with schizophrenia as their clinical symptoms improve: results from the Juntendo University Schizophrenia Projects (JUSP). Prog Neuropsychopharmacol Biol Psychiatry 32:1905–1912

    Article  CAS  PubMed  Google Scholar 

  121. Berna MJ, Ackermann BL (2007) Quantification of serine enantiomers in rat brain microdialysate using Marfey’s reagent and LC/MS/MS. J Chromatogr B 846:359–363

    Article  CAS  Google Scholar 

  122. Fuchs SA, de Barse MM, Roeleveld MW, Hendriks M, Dorland L, Klomp LW, de Koning TJ (2008) Two mass-spectrometric techniques for quantifying serine enantiomers and glycine in cerebrospinal fluid: potential confounders and age-dependent ranges. Clin Chem 54:1443–1450

    Article  CAS  PubMed  Google Scholar 

  123. Luykx JJ, Bakker SC, Van Boxmeer L, Vinkers CH, Smeenk HE, Visser WF, Van Dongen EP (2013) d-amino acid aberrations in cerebrospinal fluid and plasma of smokers. Neuropsychopharmacology 38:2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xing Y, Li X, Guo X, Cui Y (2016) Simultaneous determination of 18 d-amino acids in rat plasma by an ultrahigh-performance liquid chromatography-tandem mass spectrometry method: application to explore the potential relationship between Alzheimer’s disease and d-amino acid level alterations. Anal Bioanal Chem 408:141–150

    Article  CAS  PubMed  Google Scholar 

  125. Mochizuki T, Takayama T, Todoroki K, Inoue K, Min JZ, Toyooka T (2015) Towards the chiral metabolomics: Liquid chromatography–mass spectrometry based dl-amino acid analysis after labeling with a new chiral reagent, (S)-2, 5-dioxopyrrolidin-1-yl-1-(4, 6-dimethoxy-1, 3, 5-triazin-2-yl) pyrrolidine-2-carboxylate, and the application to saliva of healthy volunteers. Anal Chim Acta 875:73–82

    Article  CAS  PubMed  Google Scholar 

  126. Karakawa S, Shimbo K, Yamada N, Mizukoshi T, Miyano H, Mita M, Hamase K (2015) Simultaneous analysis of d-alanine, d-aspartic acid, and d-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues. J Pharm Biomed Anal 115:123–129

    Article  CAS  PubMed  Google Scholar 

  127. Sugimoto H, Kakehi M, Jinno F (2015) Bioanalytical method for the simultaneous determination of d-and l-serine in human plasma by LC/MS/MS. Anal Biochem 487:38–44

    Article  CAS  PubMed  Google Scholar 

  128. Kinoshita K, Jingu S, Yamaguchi JI (2013) A surrogate analyte method to determine d-serine in mouse brain using liquid chromatography–tandem mass spectrometry. Anal Biochem 432:124–130

    Article  CAS  PubMed  Google Scholar 

  129. Fukushima T, Kato M, Santa T, Imai K (1995) Enantiomeric separation and sensitive determination of D, L-amino acids derivatized with fluorogenic benzofurazan reagents on pirkle type stationary phases. Biomed Chromatogr 9:10–17

    Article  CAS  PubMed  Google Scholar 

  130. Konya Y, Bamba T, Fukusaki E (2015) Extra-facile chiral separation of amino acid enantiomers by LC-TOFMS analysis. J Biosci Bioeng 121:349–353

    Article  PubMed  CAS  Google Scholar 

  131. Song Y, Feng Y, LeBlanc MH, Zhao S, Liu YM (2006) Assay of trace d-amino acids in neural tissue samples by capillary liquid chromatography/tandem mass spectrometry. Anal Chem 78:8121–8128

    Article  CAS  PubMed  Google Scholar 

  132. Xie Y, Alexander GM, Schwartzman RJ, Singh N, Torjman MC, Goldberg ME, Moaddel R (2014) Development and validation of a sensitive LC-MS/MS method for the determination of d-serine in human plasma. J Pharm Biomed Anal 89:1–5

    Article  CAS  PubMed  Google Scholar 

  133. Van der Greef J, Niessen WMA (1992) Hyphenated methods in mass spectrometry. Int J Mass Spectrom Ion Processes 12:857–873

    Article  Google Scholar 

  134. Niessen WMA, Tjaden UR, van der Greef J (1993) Capillary electrophoresis-mass spectrometry. J Chromatogr 636:3–19

    Article  CAS  Google Scholar 

  135. Diaz MDC, d’Orly F, Granados SG, de Leon-Rodriguez LM, Varenne A (2016) Design, synthesis, and characterization of new cyclic D, L-α-alternate amino acid peptides by capillary electrophoresis coupled to electrospray ionization mass spectrometry. Anal Chem 502:8–15

    Google Scholar 

  136. Garcia F, Henion JD (1992) Gel-filled capillary electrophoresis/mass spectrometry using a liquid junction ion spray interface. Anal Chem 64:985–990

    Article  CAS  Google Scholar 

  137. Lu W, Yang G, Cole RB (1995) Determination of amino acids by on-line capillary electrophoresis-electrospray ionization mass spectrometry. Electrophoresis 16:487–492

    Article  CAS  PubMed  Google Scholar 

  138. Soga T, Heiger DN (2000) Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 72:1236–1241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mr. Majhi has given the major contribution in writing this chapter along with drawing the figures and tables, taking the copyright permission, etc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Madhuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majhi, K.C., Karfa, P., Madhuri, R. (2019). Chromatographic Separation of Amino Acids. In: Inamuddin (eds) Applications of Ion Exchange Materials in Biomedical Industries. Springer, Cham. https://doi.org/10.1007/978-3-030-06082-4_4

Download citation

Publish with us

Policies and ethics