Skip to main content

Orientation-Dispersed Apparent Axon Diameter via Multi-Stage Spherical Mean Optimization

  • Conference paper
  • First Online:
Book cover Computational Diffusion MRI (MICCAI 2019)

Abstract

The estimation of the apparent axon diameter (AAD) via diffusion MRI is affected by the incoherent alignment of single axons around its axon bundle direction, also known as orientational dispersion. The simultaneous estimation of AAD and dispersion is challenging and requires the optimization of many parameters at the same time. We propose to reduce the complexity of the estimation with an multi-stage approach, inspired to alternate convex search, that separates the estimation problem into simpler ones, thus avoiding the estimation of all the relevant model parameters at once. The method is composed of three optimization stages that are iterated, where we separately estimate the volume fractions, diffusivities, dispersion, and mean AAD, using a Cylinder and Zeppelin model. First, we use multi-shell data to estimate the undispersed axon micro-environment’s signal fractions and diffusivities using the spherical mean technique; then, to account for dispersion, we use the obtained micro-environment parameters to estimate a Watson axon orientation distribution; finally, we use data acquired perpendicularly to the axon bundle direction to estimate the mean AAD and updated signal fractions, while fixing the previously estimated diffusivity and dispersion parameters. We use the estimated mean AAD to initiate the following iteration. We show that our approach converges to good estimates while being more efficient than optimizing all model parameters at once. We apply our method to ex-vivo spinal cord data, showing that including dispersion effects results in mean apparent axon diameter estimates that are closer to their measured histological values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/AthenaEPI/dmipy.

References

  1. Zhang, H., et al.: Axon diameter mapping in the presence of orientation dispersion with diffusion MRI. NeuroImage 56(3), 1301–1315 (2011)

    Article  Google Scholar 

  2. Jelescu, I.O., et al.: Degeneracy in model parameter estimation for multicompartmental diffusion in neuronal tissue. NMR Biomed. 29(1), 33–47 (2016)

    Article  Google Scholar 

  3. Gorski, J., et al.: Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Method Oper. Res. 66(3), 373–407 (2007)

    Article  MathSciNet  Google Scholar 

  4. Alexander, D.C.: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. MRM (2008)

    Google Scholar 

  5. Alexander, D.C., et al.: Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage 52(4), 1374–1389 (2010)

    Article  Google Scholar 

  6. Assaf, Y., et al.: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. MRM, 1347–1354 (2008)

    Google Scholar 

  7. Huang, S.Y., et al.: The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. NeuroImage 106, 464–472 (2015)

    Article  Google Scholar 

  8. De Santis, S., et al.: Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter. NeuroImage 130, 91–103 (2016)

    Article  Google Scholar 

  9. Daducci, A., et al.: Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data. NeuroImage 105, 32–44 (2015)

    Article  Google Scholar 

  10. Farooq, H., et al.: Microstructure imaging of crossing (MIX) white matter fibers from diffusion MRI. Nature Sci. Rep. 6, 38927 (2016)

    Google Scholar 

  11. Vangelderen, P., et al.: Evaluation of restricted diffusion in cylinders: Phosphocreatine in rabbit leg muscle. J. Magn. Reson. Ser. B 103(3), 255–260 (1994)

    Article  Google Scholar 

  12. Kaden, E., et al.: Parametric spherical deconvolution: inferring anatomical connectivity using diffusion MR imaging. NeuroImage 37(2), 474–488 (2007)

    Article  Google Scholar 

  13. Zhang, H., et al.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

  14. Kaden, E., et al.: Multi-compartment microscopic diffusion imaging. NeuroImage 139, 346–359 (2016)

    Article  Google Scholar 

  15. Fick, R., et al.: Dmipy: an open-source framework to improve reproducibility in Brain Microstructure Imaging. In: HBM (2018). https://github.com/AthenaEPI/dmipy

  16. Fick, R., et al.: Dmipy: an open-source framework for reproducible dMRI-based microstructure research (Version 0.1). Zenodo (2018). https://doi.org/10.5281/zenodo.1188268

  17. Duval, T., et al.: Validation of quantitative MRI metrics using full slice histology with automatic axon segmentation. In: ISMRM, p. 928 (2016)

    Google Scholar 

  18. Cohen-Adad, J., et al.: White matter microscopy database (2017). https://doi.org/10.17605/OSF.IO/YP4QG

  19. Panagiotaki, E., et al.: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. NeuroImage 59(3), 2241–2254 (2012)

    Article  Google Scholar 

  20. Tanner, J.E., Stejskal, E.O.: Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. JCP 49(4), 1768–1777 (1968)

    Google Scholar 

  21. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  22. Burcaw, L.M., et al.: Mesoscopic structure of neuronal tracts from time-dependent diffusion. NeuroImage 114, 18–37 (2015)

    Article  Google Scholar 

  23. Fieremans, E., et al.: In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter. NeuroImage 129, 414–427 (2016)

    Article  Google Scholar 

  24. Lee, H.H., et al.: What dominates the time dependence of diffusion transverse to axons: intra-or extra-axonal water? NeuroImage (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Swiss National Science Foundation under grant number CRSII5\(\_\)170873 (Sinergia project) and by the ERC Advanced Grant agreement No. 694665 (CoBCoM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pizzolato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pizzolato, M., Wassermann, D., Deriche, R., Thiran, JP., Fick, R. (2019). Orientation-Dispersed Apparent Axon Diameter via Multi-Stage Spherical Mean Optimization. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_8

Download citation

Publish with us

Policies and ethics