Skip to main content

Resolving the Crossing/Kissing Fiber Ambiguity Using Functionally Informed COMMIT

  • Conference paper
  • First Online:
Computational Diffusion MRI (MICCAI 2019)

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1090 Accesses

Abstract

The architecture of the white matter is endowed with kissing and crossing bundles configurations. When these white matter tracts are reconstructed using diffusion MRI tractography, this systematically induces the reconstruction of many fiber tracts that are not coherent with the structure of the brain. The question on how to discriminate between true positive connections and false positive connections is the one addressed in this work. State-of-the-art techniques provide a partial solution to this problem by considering anatomical priors in the false positives detection process. We propose a novel model that tackles the same issue but takes into account both structural and functional information by combining them in a convex optimization problem. We validate it on two toy phantoms that reproduce the kissing and the crossing bundles configurations, showing that through this approach we are able to correctly distinguish true positives and false positives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al.: Structured sparsity through convex optimization. Stat. Sci. 27(4), 450–468 (2012)

    Article  MathSciNet  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  3. Caruyer, E., Daducci, A., Descoteaux, M., Houde, J.C., Thiran, J.P., Verma, R.: Phantomas: a flexible software library to simulate diffusion mr phantoms. In: ISMRM (2014)

    Google Scholar 

  4. Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R.: Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. 69(6), 1534–1540 (2013)

    Article  Google Scholar 

  5. Daducci, A., Barakovic, M., Girard, G., Descoteaux, M., Thiran, J.P.: Reducing false positives in tractography with microstructural and anatomical priors. In: ISMRM 2018-International Society for Magnetic Resonance in Medicine (2018)

    Google Scholar 

  6. Daducci, A., Dal Palú, A., Descoteaux, M., Thiran, J.P.: Microstructure informed tractography: pitfalls and open challenges. Front. Neurosci. 10, 247 (2016)

    Article  Google Scholar 

  7. Daducci, A., Dal Palù, A., Lemkaddem, A., Thiran, J.P.: Commit: convex optimization modeling for microstructure informed tractography. IEEE Trans. Med. Imaging 34(1), 246–257 (2015)

    Article  Google Scholar 

  8. Frigo, M., Barakovic, M., Thiran, J.P., Daducci, A.: Hierarchical tractography optimisation. In: CoBCoM 2017-Computational Brain Connectivity Mapping Winter School Workshop, p. 1 (2017)

    Google Scholar 

  9. Frigo, M., Gallardo, G., Costantini, I., Daducci, A., Wassermann, D., Deriche, R., Deslauriers-Gauthier, S.: Reducing false positive connection in tractograms using joint structure-function filtering. In: OHBM 2018-Organization for Human Brain Mapping (2018)

    Google Scholar 

  10. Girard, G., Fick, R., Descoteaux, M., Deriche, R., Wassermann, D.: Axtract: microstructure-driven tractography based on the ensemble average propagator. In: International Conference on Information Processing in Medical Imaging, pp. 675–686. Springer (2015)

    Google Scholar 

  11. Jenatton, R., Mairal, J., Obozinski, G., Bach, F.R.: Proximal methods for sparse hierarchical dictionary learning. In: ICML, pp. 487–494 (2010) (No. 2010, Citeseer)

    Google Scholar 

  12. Leonardi, N., Van De Ville, D.: On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104, 430–436 (2015)

    Article  Google Scholar 

  13. Maier-Hein, K.H., Neher, P.F., Houde, J.C., Côté, M.A., Garyfallidis, E., Zhong, J., Chamberland, M., Yeh, F.C., Lin, Y.C., Ji, Q., et al.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8(1), 1349 (2017)

    Article  Google Scholar 

  14. Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C.: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 59(3), 2241–2254 (2012)

    Article  Google Scholar 

  15. Pestilli, F., Yeatman, J.D., Rokem, A., Kay, K.N., Wandell, B.A.: Evaluation and statistical inference for human connectomes. Nat. Methods 11(10), 1058 (2014)

    Article  Google Scholar 

  16. Sanz Leon, P., Knock, S.A., Woodman, M.M., Domide, L., Mersmann, J., McIntosh, A.R., Jirsa, V.: The virtual brain: a simulator of primate brain network dynamics. Front. Neuroinformatics 7, 10 (2013)

    Article  Google Scholar 

  17. Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A.: Sift2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119, 338–351 (2015)

    Article  Google Scholar 

  18. The virtual brain: the resting state network scripting tutorial (2018)

    Google Scholar 

  19. Zalesky, A., Fornito, A., Cocchi, L., Gollo, L.L., van den Heuvel, M.P., Breakspear, M.: Connectome sensitivity or specificity: which is more important? Neuroimage 142, 407–420 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Rebecca Bonham-Carter for the help in simulating resting state networks. This work received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC Advanced Grant agreement No 694665: CoBCoM–Computational Brain Connectivity Mapping).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Frigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frigo, M., Costantini, I., Deriche, R., Deslauriers-Gauthier, S. (2019). Resolving the Crossing/Kissing Fiber Ambiguity Using Functionally Informed COMMIT. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_26

Download citation

Publish with us

Policies and ethics