Skip to main content

Edge Weights and Network Properties in Multiple Sclerosis

  • Conference paper
  • First Online:
Computational Diffusion MRI (MICCAI 2019)

Abstract

Graph theory is able to provide quantitative parameters that describe structural and functional characteristics of human brain networks. Comparisons between subject populations have demonstrated topological disruptions in many neurological disorders; however interpreting network parameters and assessing the extent of the damage is challenging. The abstraction of brain connectivity to a set of nodes and edges in a graph is non-trivial, and factors from image acquisition, post-processing and network construction can all influence derived network parameters. We consider here the impact of edge weighting schemes in a comparative analysis of structural brain networks, using healthy control and relapsing-remitting multiple sclerosis subjects as test groups. We demonstrate that the choice of edge property can substantially affect inferences of network disruptions in disease, ranging from ‘primarily intact connectivity’ to ‘complete disruption’. Although study design should predominantly dictate the choice of edge weight, it is important to consider how study outcomes may be affected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geschwind, N.: Disconnexion syndromes in animal and man: Part I. Brain 88, 237–294 (1965)

    Article  Google Scholar 

  2. Geschwind, N.: Disconnexion syndromes in animal and man: Part II. Brain 88, 237–294 (1965)

    Article  Google Scholar 

  3. Bassett, D.S., Bullmore, E.: Small-world brain networks. Neuroscientist 12(6), 512–523 (2006)

    Article  Google Scholar 

  4. van den Heuvel, M.P., Sporns, O.: Rich-club organization of the human connectome. J. Neurosci. 31(44), 15775–15786 (2011)

    Article  Google Scholar 

  5. Bassett, D.S., Bullmore, E., Verchinski, B.A., Mattay, V.S., Weinberger, D.R., Meyer-Lindenberg, A.: Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28(37), 9239–9248 (2008)

    Article  Google Scholar 

  6. He, Y., Dagher, A., Chen, Z., Charil, A., Zijdenbos, A., Worsley, K., Evans, A.: Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 132(12), 3366–3379 (2009)

    Article  Google Scholar 

  7. Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Yücel, M., Pantelis, C., Bullmore, E.T.: Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50(3), 970–983 (2010)

    Article  Google Scholar 

  8. Bastiani, M., Shah, N., Goebel, R., Roebroeck, A.: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. Neuroimage 62(3), 1732–1749 (2012)

    Article  Google Scholar 

  9. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010)

    Article  Google Scholar 

  10. Fornito, A., Zalesky, A., Breakspear, M.: Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013)

    Article  Google Scholar 

  11. Bullmore, E.T., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10, 186–198 (2009)

    Article  Google Scholar 

  12. Cheng, H., Wang, Y., Sheng, J., Kronenberger, W.G., Mathews, V.P., Hummer, T.A., Saykin, A.J.: Characteristics and variability of structural networks derived from diffusion tensor imaging. Neuroimage 61(4), 1153–1164 (2012)

    Article  Google Scholar 

  13. Andersson, J., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2015)

    Article  Google Scholar 

  14. Bhushan, C., Haldar, J.P., Joshi, A.A., Leahy, R.M.: Correcting susceptibility-induced distortion in diffusion-weighted MRI using constrained nonrigid registration. In: APSIPA ASC, pp. 1–9 (2012)

    Google Scholar 

  15. Cardoso, M., Modat, M., Wolz, R., Melbourne, A., Cash, D., Rueckert, D., Ourselin, S.: Geodesic information flows: spatially-variant graphs and their application to segmentation and fusion. IEEE Trans. Med. Imaging. 34(9), 1976–1988 (2015)

    Article  Google Scholar 

  16. Behrens, T., Berg, H., Jbabdi, S., Rushworth, M.F., Woolrich, M.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1), 144–155 (2007)

    Article  Google Scholar 

  17. Clayden, J., Mu, S., Storkey, A., King, M., Bastin, M., Clark, C.: TractoR: magnetic resonance imaging and tractography with R. J. Stat. Softw. 44(8), 1–18 (2011)

    Article  Google Scholar 

  18. Westfall, P., Young, S.: Resampling-Based Multiple Testing: Examples and Methods for p-value Adjustment. Wiley (2003)

    Google Scholar 

  19. Shu, N., Duan, Y., Xia, M., Schoonheim, M.M., Huang, J., Ren, Z., Sun, Z., Ye, J., Dong, H., Shi, F.D., Barkhof, F., Li, K., Liu, Y.: Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis. Sci. Rep. 6 (2016)

    Google Scholar 

  20. Llufriu, S., Martinez-Heras, E., Solana, E., Sola-Valls, N., Sepulveda, M., Blanco, Y., Martinez-Lapiscina, E.H., Andorra, M., Villoslada, P., Prats-Galino, A., Saiz, A.: Structural networks involved in attentional function in multiple sclerosis. Neuroimage Clin. 13, 288–296 (2017)

    Article  Google Scholar 

  21. Zalesky, A., Fornito, A.: A DTI-derived measure of cortico-cortical connectivity. IEEE Trans Med. Imaging 28(7), 1023–1036 (2009)

    Article  Google Scholar 

  22. Gamboa, O.L., Tagliazucchi, E., Von Wegner, F., Jurcoane, A., Wahl, M., Laufs, H., Ziemann, U.: Working memory performance of early MS patients correlates inversely with modularity increases in resting state functional connectivity networks. Neuroimage 94, 385–395 (2014)

    Article  Google Scholar 

  23. Baum, G.L., Roalf, D.R., Cook, P.A., Ciric, R., Rosen, A.F.G., Xia, C., Elliott, M.A., Ruparel, K., Verma, R., Tunç, B., Gur, R.C., Gur, R.E., Bassett, D.S., Satterthwaite, T.D.: The impact of in-scanner head motion on structural connectivity derived from diffusion MRI. Neuroimage 173, 275–286 (2018)

    Article  Google Scholar 

  24. Jones, D.K., Knösche, T.R., Turner, R.: White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73, 239–254 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The NMR unit where this work was performed is supported by grants from the Multiple Sclerosis Society of Great Britain and Northern Ireland, Philips Healthcare, and supported by the UCL/UCLH NIHR (National Institute for Health Research) BRC (Biomedical Research Centre).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Powell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Powell, E., Prados, F., Chard, D., Toosy, A., Clayden, J.D., Wheeler-Kingshott, C.G.A.M. (2019). Edge Weights and Network Properties in Multiple Sclerosis . In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_22

Download citation

Publish with us

Policies and ethics