Skip to main content

GPU-Based Parallel Computations in Multicriterial Optimization

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2018)

Abstract

In the present paper, an efficient approach for solving the time-consuming multicriterial optimization problems, in which the optimality criteria could be the multiextremal ones and computing the criteria values could require a large amount of computations is proposed. The proposed approach is based on the reduction of the multicriterial problems to the scalar optimization ones with the use of the minimax convolution of the partial criteria, on the dimensionality reduction with the use of the Peano space-filling curves, and on the application of the efficient information-statistical global optimization methods. An additional application of the block multistep scheme provides the opportunity of the large-scale parallel computations with the use of the graphics processing units (GPUs) with thousands of computational cores. The results of the numerical experiments have demonstrated such an approach to allow improving the computational efficiency of solving the multicriterial optimization problems considerably – hundreds and thousands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marler, R.T., Arora, J.S.: Multi-Objective Optimization: Concepts and Methods for Engineering. VDM Verlag, Saarbrücken (2009)

    Google Scholar 

  2. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelber (2005). https://doi.org/10.1007/3-540-27659-9. (2nd ed., 2010)

    Book  MATH  Google Scholar 

  3. Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies (Decision Engineering). Springer, Heidelberg (2011)

    MATH  Google Scholar 

  4. Pardalos, P.M., Žilinskas, A., Žilinskas, J.: Non-Convex Multi-Objective Optimization. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61007-8

    Book  MATH  Google Scholar 

  5. Hillermeier, C., Jahn, J.: Multiobjective optimization: survey of methods and industrial applications. Surv. Math. Ind. 11, 1–42 (2005)

    MATH  Google Scholar 

  6. Cho, J.-H., Wang, Y., Chen, I.-R., Chan, K.S., Swami, A.: A survey on modeling and optimizing multi-objective systems. IEEE Commun. Surv. Tutor. 19(3), 1867–1901 (2017)

    Article  Google Scholar 

  7. Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44, 249–273 (2009)

    Article  MathSciNet  Google Scholar 

  8. Strongin, R., Sergeyev, Y.: Global Optimization with Non-convex Constraints. Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). (2nd ed. 2013, 3rd ed. 2014)

    Book  Google Scholar 

  9. Strongin, R., Gergel, V., Grishagin, V., Barkalov, K.: Parallel computations for global optimization problems, Moscow State University Press (2013). (in Russian)

    Google Scholar 

  10. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-filling Curves. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8042-6

    Book  MATH  Google Scholar 

  11. Gergel, V.P., Kozinov, E.A.: Accelerating parallel multicriterial optimization methods based on intensive using of search information. Procedia Comput. Sci. 108, 1463–1472 (2017)

    Article  Google Scholar 

  12. Gergel, V., Kozinov, E.: Parallel computing for time-consuming multicriterial optimization problems. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 446–458. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62932-2_43

    Chapter  Google Scholar 

  13. Gergel, V., Kozinov, E.: Efficient methods of multicriterial optimization based on the intensive use of search information. In: Kalyagin, V., Nikolaev, A., Pardalos, P., Prokopyev, O. (eds.) NET 2016. PROMS, vol. 197, pp. 27–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56829-4_3

    Chapter  Google Scholar 

  14. Gergel, V., Kozinov, E.: An approach for parallel solving the multicriterial optimization problems with non-convex constraints. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. CCIS, vol. 793, pp. 121–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71255-0_10

    Chapter  Google Scholar 

  15. Cai, Y., See, S. (eds.): GPU Computing and Applications. Springer, Singapore (2015). https://doi.org/10.1007/978-981-287-134-3

    Book  Google Scholar 

  16. Ferreiro, A.M., Garcia, J.A., Lopez-Salas, J.G., Vazquez, C.: An efficient implementation of parallel simulated annealing algorithm in GPUs. J. Glob. Optim. 57(3), 863–890 (2013)

    Article  MathSciNet  Google Scholar 

  17. Zhu, W.: Massively parallel differential evolution–pattern search optimization with graphics hardware acceleration: an investigation on bound constrained optimization problems. J. Glob. Optim. 50(3), 417–437 (2011)

    Article  Google Scholar 

  18. Garcia-Martinez, J.M., Garzon, E.M., Ortigosa, P.M.: A GPU implementation of a hybrid evolutionary algorithm: GPuEGO. J. Supercomput (2014). https://doi.org/10.1007/s11227-014-1136-7

  19. Langdon, W.B.: Graphics processing units and genetic programming: an overview. Soft. Comput. 15(8), 1657–1669 (2011)

    Article  Google Scholar 

  20. Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Applications. SIAM (2013)

    Google Scholar 

  21. Floudas, C.A., Pardalos, M.P.: Recent Advances in Global Optimization. Princeton University Press, Princeton (2016)

    Google Scholar 

  22. Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making. In: Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 76–88. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45145-7_7

    Chapter  Google Scholar 

  23. Gergel, V.P., Kuzmin, M.I., Solovyov, N.A., Grishagin, V.A.: Recognition of surface defects of cold-rolling sheets based on method of localities. Int. Rev. Autom. Control. 8(1), 51–55 (2015)

    Google Scholar 

  24. Modorskii, V.Y., Gaynutdinova, D.F., Gergel, V.P., Barkalov, K.A.: Optimization in design of scientific products for purposes of cavitation problems. In: AIP Conference Proceedings, vol. 1738, p. 400013 (2016). https://doi.org/10.1063/1.4952201

  25. Grishagin, V., Israfilov, R., Sergeyev, Y.: Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes. Appl. Math. Comput. 318, 270–280 (2018). https://doi.org/10.1016/j.amc.2017.06.036

    Article  MathSciNet  Google Scholar 

  26. Sergeyev, Y., Grishagin, V.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Barkalov, K.A., Gergel, V.P.: Multilevel scheme of dimensionality reduction for parallel global search algorithms. In: Proceedings of the 1st International Conference on Engineering and Applied Sciences Optimization, pp. 2111–2124 (2014)

    Google Scholar 

  28. Gergel, V., Lebedev, I.: Heterogeneous parallel computations for solving global optimization problems. Procedia Comput. Sci. 66, 53–62 (2015)

    Article  Google Scholar 

  29. Gergel, V., Sidorov, S.: A two-level parallel global search algorithm for solution of computationally intensive multiextremal optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 505–515. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21909-7_49

    Chapter  Google Scholar 

  30. Gergel, V.: An unified approach to use of coprocessors of various types for solving global optimization problems. In: 2nd International Conference on Mathematics and Computers in Sciences and in Industry, MCSI, vol. 7423935, pp. 13–18 (2016)

    Google Scholar 

  31. Evtushenko, Y.G., Posypkin, M.A.: A deterministic algorithm for global multi-objective optimization. Optim. Methods Softw. 29(5), 1005–1019 (2014)

    Article  MathSciNet  Google Scholar 

  32. Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective Lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul. 21, 89–98 (2015)

    Article  MathSciNet  Google Scholar 

  33. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation, project No 16-11-10150 “Novel efficient methods and software tools for time-consuming decision-making problems using supercomputers of superior performance”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Gergel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gergel, V., Kozinov, E. (2019). GPU-Based Parallel Computations in Multicriterial Optimization. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05807-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05806-7

  • Online ISBN: 978-3-030-05807-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics