Skip to main content

Dependable and Coordinated Resources Allocation Algorithms for Distributed Computing

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 965))

Included in the following conference series:

  • 619 Accesses

Abstract

In this work, we introduce slot selection and co-allocation algorithms for parallel jobs in distributed computing with non-dedicated and heterogeneous resources. A single slot is a time span that can be assigned to a task, which is a part of a parallel job. The job launch requires a co-allocation of a specified number of slots starting and finishing synchronously. Some existing resource co-allocation algorithms assign a job to the first set of slots matching the resource request without any optimization (the first fit type), while other algorithms are based on an exhaustive search. In this paper, algorithms for efficient, dependable and coordinated slot selection are studied and compared with known approaches. The novelty of the proposed approach is in a general algorithm efficiently selecting a set of slots according to the specified criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dimitriadou, S.K., Karatza, H.D.: Job scheduling in a distributed system using backfilling with inaccurate runtime computations. In: Proceedings of 2010 International Conference on Complex, Intelligent and Software Intensive Systems, pp. 329–336 (2010)

    Google Scholar 

  2. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Potekhin, P.: Heuristic strategies for preference-based scheduling in virtual organizations of utility grids. J. Ambient Intell. Hum. Comput. 6(6), 733–740 (2015)

    Article  Google Scholar 

  3. Buyya, R., Abramson, D., Giddy, J.: Economic models for resource management and scheduling in grid computing. J. Concurr. Comput. Pract. Exp. 5(14), 1507–1542 (2002)

    Article  Google Scholar 

  4. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001)

    Article  Google Scholar 

  5. Carroll, T., Grosu, D.: Formation of virtual organizations in grids: a game-theoretic approach. Econ. Mod. Algorithms Distrib. Syst. 22(14), 63–81 (2009)

    Article  Google Scholar 

  6. Yang, R., Xu, J.: Computing at massive scale: scalability and dependability challenges. In: 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE), pp. 386–397 (2016)

    Google Scholar 

  7. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic scheduling in grid computing. In: Feitelson, Dror G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 128–152. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36180-4_8

    Chapter  MATH  Google Scholar 

  8. Aida, K., Casanova, H.: Scheduling mixed-parallel applications with advance reservations. In: 17th IEEE International Symposium on HPDC, pp. 65–74. IEEE CS Press, New York (2008)

    Google Scholar 

  9. Elmroth, E., Tordsson, J.: A standards-based grid resource brokering service supporting advance reservations, co-allocation and cross-grid interoperability. J. Concurr. Comput. Pract. Exp. 25(18), 2298–2335 (2009)

    Article  Google Scholar 

  10. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An advance reservation-based co-allocation algorithm for distributed computers and network bandwidth on QoS-guaranteed grids. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS, vol. 6253, pp. 16–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16505-4_2

    Chapter  Google Scholar 

  11. Blanco, H., Guirado, F., Lérida, J.L., Albornoz, V.M.: MIP model scheduling for multi-clusters. In: Caragiannis, I., et al. (eds.) Euro-Par 2012. LNCS, vol. 7640, pp. 196–206. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36949-0_22

    Chapter  Google Scholar 

  12. Garg, S.K., Konugurthi, P., Buyya, R.: A linear programming-driven genetic algorithm for meta-scheduling on utility grids. Int. J. Parallel Emergent Distrib. Syst. 26, 493–517 (2011)

    Article  MathSciNet  Google Scholar 

  13. Moab Adaptive Computing. http://www.adaptivecomputing.com. Accessed 12 Apr 2018

  14. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. J. Softw. Pract. Exp. 41(1), 23–50 (2011)

    Article  Google Scholar 

  15. Samimi, P., Teimouri, Y., Mukhtar, M.: A combinatorial double auction resource allocation model in cloud computing. J. Inf. Sci. 357 C, 201–216 (2016)

    Article  Google Scholar 

  16. Toporkov, V., Toporkova, A., Bobchenkov, A., Yemelyanov, D.: Resource selection algorithms for economic scheduling in distributed systems. In: Proceedings of International Conference on Computational Science, ICCS 2011, 1–3 June 2011, Singapore, Procedia Computer Science, vol. 4, pp. 2267–2276. Elsevier (2011)

    Google Scholar 

  17. Kovalenko, V.N., Koryagin, D.A.: The grid: analysis of basic principles and ways of application. J. Programm. Comput. Softw. 35(1), 18–34 (2009)

    Article  Google Scholar 

  18. Makhlouf, S., Yagoubi, B.: Resources co-allocation strategies in grid computing. In: CIIA, CEUR Workshop Proceedings, vol. 825 (2011)

    Google Scholar 

  19. Netto, M.A.S., Buyya, R.: A flexible resource co-allocation model based on advance reservations with rescheduling support. In: Technical Report, GRIDSTR-2007-17, Grid Computing and Distributed Systems Laboratory, The University of Melbourne, Australia, 9 October 2007

    Google Scholar 

  20. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Slot selection algorithms in distributed computing. J. Supercomput. 69(1), 53–60 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Council on Grants of the President of the Russian Federation for State Support of Young Scientists (YPhD-2297.2017.9), RFBR (grants 18-07-00456 and 18-07-00534) and by the Ministry on Education and Science of the Russian Federation (project no. 2.9606.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Toporkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toporkov, V., Yemelyanov, D. (2019). Dependable and Coordinated Resources Allocation Algorithms for Distributed Computing. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05807-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05806-7

  • Online ISBN: 978-3-030-05807-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics