Skip to main content

The Parallel Hydrodynamic Code for Astrophysical Flow with Stellar Equations of State

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 965))

Included in the following conference series:

Abstract

In this paper, a new calculation method for numerical simulation of astrophysical flow at the supercomputers is described. The co-design of parallel numerical algorithms for astrophysical simulations is described in detail. The hydrodynamical numerical model with stellar equations of state (EOS), numerical methods for solving the hyperbolic equations and a short description of the parallel implementation of the code are described. For problems using large amounts of RAM, for example, the collapse of a molecular cloud core, our code upgraded for Intel Memory Drive Technology (IMDT) support. In this paper, we present the results of some IMDT performance tests based on Siberian Supercomputer Center facilities equipped with Intel Optane Memory. The results of numerical experiments of hydrodynamical simulations of the model stellar explosion are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katz, M., Zingale, M., Calder, A., Douglas Swesty, F., Almgren, A., Zhang, W.: White dwarf mergers on adaptive meshes. I. methodology and code verification. Astrophys. J. 819(2), 94 (2016)

    Google Scholar 

  2. Pearcea, F.R., Couchman, H.M.P.: Hydra: a parallel adaptive grid code. New Astron. 2, 411 (1997)

    Article  Google Scholar 

  3. Wadsley, J.W., Stadel, J., Quinn, T.: Gasoline: a flexible, parallel implementation of TreeSPH. New Astron. 9, 137 (2004)

    Article  Google Scholar 

  4. Matthias, S.: GRAPESPH: cosmological smoothed particle hydrodynamics simulations with the special-purpose hardware GRAPE. Mon. Not. R. Astron. Soc. 278, 1005 (1996)

    Article  Google Scholar 

  5. Springel, V.: The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105 (2005)

    Article  Google Scholar 

  6. Ziegler, U.: Self-gravitational adaptive mesh magnetohydrodynamics with the NIRVANA code. Astron. Astrophys. 435, 385 (2005)

    Article  Google Scholar 

  7. Mignone, A., Plewa, T., Bodo, G.: The piecewise parabolic method for multidimensional relativistic fluid dynamics. Astrophys. J. 160, 199 (2005)

    Article  Google Scholar 

  8. Hayes, J., Norman, M., Fiedler, R., et al.: Simulating radiating and magnetized flows in multiple dimensions with ZEUS-MP. Astrophys. J. Suppl. Ser. 165, 188 (2006)

    Article  Google Scholar 

  9. O’Shea, B., et al.: Adaptive mesh refinement - theory and applications. Lect. Not. Comput. Sci. Eng. 41, 341 (2005)

    Article  MathSciNet  Google Scholar 

  10. Teyssier, R.: Cosmological hydrodynamics with adaptive mesh refinement-A new high resolution code called RAMSES. Astron. Astrophys. 385, 337 (2002)

    Article  Google Scholar 

  11. Kravtsov, A., Klypin, A., Hoffman, Y.: Constrained simulations of the real universe. II. Observational signatures of intergalactic gas in the local supercluster region. Astrophys. J. 571, 563 (2002)

    Google Scholar 

  12. Stone, J., Gardiner, T., Teuben, P., Hawley, J., Simon, J.: Athena: a new code for astrophysical MHD. Astrophys. J. Suppl. Ser. 178, 137 (2008)

    Article  Google Scholar 

  13. Brandenburg, A., Dobler, W.: Hydromagnetic turbulence in computer simulations. Comput. Phys. Commun. 147, 471 (2002)

    Article  Google Scholar 

  14. Gonzalez, M., Audit, E., Huynh, P.: HERACLES: a three-dimensional radiation hydrodynamics code. Astron. Astrophys. 464, 429 (2007)

    Article  Google Scholar 

  15. Krumholz, M.R., Klein, R.I., McKee, C.F., Bolstad, J.: Equations and algorithms for mixed-frame flux-limited diffusion radiation hydrodynamics. Astrophys. J. 667, 626 (2007)

    Article  Google Scholar 

  16. Mignone, A., et al.: PLUTO: a numerical code for computational astrophysics. Astrophys. J. Suppl. Ser. 170, 228 (2007)

    Article  Google Scholar 

  17. Almgren, A., Beckner, V., Bell, J., et al.: CASTRO: a new compressible astrophysical solver. I. Hydrodynamics and self-gravity. Astrophys. J. 715, 1221 (2010)

    Google Scholar 

  18. Schive, H., Tsai, Y., Chiueh, T.: GAMER: a GPU-accelerated adaptive-mesh-refinement code for astrophysics. Astrophys. J. 186, 457 (2010)

    Article  Google Scholar 

  19. Murphy, J., Burrows, A.: BETHE-Hydro: an arbitrary Lagrangian-Eulerian multidimensional hydrodynamics code for astrophysical simulations. Astrophys. J. Suppl. Ser. 179, 209 (2008)

    Article  Google Scholar 

  20. Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791 (2010)

    Article  Google Scholar 

  21. Bruenn, S., Mezzacappa, A., Hix, W., et al.: 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code. J. Phys. 180, 012018 (2009)

    Google Scholar 

  22. Hopkins, P.: A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. R. Astron. Soc. 450, 53 (2015)

    Article  Google Scholar 

  23. Kulikov, I.: GPUPEGAS: A new GPU-accelerated hydrodynamic code for numerical simulations of interacting galaxies. Astrophys. J. Suppl. Ser. 214(1), 12 (2014)

    Article  Google Scholar 

  24. Kulikov, I.M., Chernykh, I.G., Snytnikov, A.V., Glinskiy, B.M., Tutukov, A.V.: AstroPhi: a code for complex simulation of dynamics of astrophysical objects using hybrid supercomputers. Comput. Phys. Commun. 186, 71–80 (2015)

    Article  Google Scholar 

  25. Tutukov, A., Lazareva, G., Kulikov, I.: Gas dynamics of a central collision of two galaxies: merger, disruption, passage, and the formation of a new galaxy. Astron. Rep. 55(9), 770–783 (2011)

    Article  Google Scholar 

  26. Vshivkov, V., Lazareva, G., Snytnikov, A., Kulikov, I.: Supercomputer simulation of an astrophysical object collapse by the fluids-in-cell method. Lect. Not. Comput. Sci. 5698, 414–422 (2009)

    Article  Google Scholar 

  27. Godunov, S., Kulikov, I.: Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee. Comput. Math. Math. Phys. 54, 1012–1024 (2014)

    Article  MathSciNet  Google Scholar 

  28. Vshivkov, V., Lazareva, G., Snytnikov, A., Kulikov, I., Tutukov, A.: Hydrodynamical code for numerical simulation of the gas components of colliding galaxies. Astrophys. J. Suppl. Ser. 194(47), 1–12 (2011)

    Google Scholar 

  29. Vshivkov, V., Lazareva, G., Snytnikov, A., Kulikov, I., Tutukov, A.: Computational methods for ill-posed problems of gravitational gasodynamics. J. Inverse Ill-posed Prob. 19(1), 151–166 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Kulikov, I., Vorobyov, E.: Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows. J. Comput. Phys. 317, 318–346 (2016)

    Article  MathSciNet  Google Scholar 

  31. Roofline Performance Model. https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

  32. Glinskiy, B., Kulikov, I., Chernykh, I.: Improving the performance of an AstroPhi code for massively parallel supercomputers using roofline analysis. Commun. Comput. Inf. Sci. 793, 400–406 (2017)

    Google Scholar 

  33. Kulikov, I., Chernykh, I., Glinskiy, B., Protasov, V.: An efficient optimization of Hll method for the second generation of Intel Xeon Phi Processor. Lobachevskii J. Math. 39(4), 543–550 (2018)

    Article  MathSciNet  Google Scholar 

  34. Markets analytics. https://www.trendforce.com/

  35. RSC Tornado architecture. http://www.rscgroup.ru/en/our-solutions

  36. Intel Memory Drive Technology. https://www.intel.ru/content/www/ru/ru/solid-state-drives/optane-ssd-dc-p4800x-mdt-brief.html

Download references

Acknowledgements

The research work was supported by the Grant of the Russian Science Foundation (project 18-11-00044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kulikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulikov, I., Chernykh, I., Vshivkov, V., Prigarin, V., Mironov, V., Tutukov, A. (2019). The Parallel Hydrodynamic Code for Astrophysical Flow with Stellar Equations of State. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05807-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05806-7

  • Online ISBN: 978-3-030-05807-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics