Skip to main content

Chemical Oscillations and Spiral Waves

  • Chapter
  • First Online:
Spirals and Vortices

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Pattern formation is one of nature’s most fascinating phenomena. Starting with the evolution of life: cells and compartments start to differentiate such that they are able to undertake different tasks leading to life of complex organisms. Additionally, cells are able to release messenger substances, which may lead to an aggregation of cells as in the slime mold Dictyostelium discoideum. In this chapter, the formation of wave patterns, especially of spirals in non-equilibrium systems, is described. Starting with the revision of important aspects contributing to the historical development of synergetics, oscillating chemical reactions, such as the Belousov–Zhabotinsky reaction are described. Some theoretical aspects of reaction-diffusion systems and wave propagation in excitable media are outlined. The development and propagation of waves and thus, of spirals is described in such systems. At the end, the Belousov–Zhabotinsky reaction embedded in a compartmentalized system, namely an emulsion, is studied. Under the chosen conditions target patterns or spirals with segmented wave fronts evolve. These segmented waves (dashes) develop from a smooth one due to an instability. However, instead of forming a spiral turbulence, these dashes remain in an ordered configuration and form beautiful patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Showalter, J.J. Tyson, Luther’s 1906 discovery and analysis of chemical waves. J. Chem. Educ. 64, 742–744 (1987). https://doi.org/10.1021/ed064p742

  2. B.P. Belousov, in Oscillations and Traveling Waves in Chemical Systems, ed. by R.J. Field, M. Burger (Wiley, New York, 1984), pp. 605–614. ISBN: 0-471-89384-6

    Google Scholar 

  3. A.M. Zhabotinsky, in Oscillatory Processes in Biological and Chemical Systems, ed. G.M. Frank (Science Publications, Moscow, 1967), p. 252

    Google Scholar 

  4. R.J. Field, R.M. Noyes, Oscillations in chemical systems. V. Quantitative explanation of band migration in the Belousov–Zhabotinskii reaction. J. Am. Chem. Soc. 96, 2001–2006 (1974)

    Article  Google Scholar 

  5. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952). https://doi.org/10.1113/jphysiol.1952.sp004764

  6. H. Haken, P. Plath, W. Ebeling, Y. Romanovsky, Beiträge zur Geschichte der Synergetik-Allgemeine Prinzipien der Selbstorganisation in Natur und Gesellschaft (Springer Spektrum, Wiesbaden, 2016). https://doi.org/10.1007/978-3-658-12952-1

  7. R.J. Field, E. Körös, R.M. Noyes, Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972). https://doi.org/10.1021/ja00780a001

  8. T.S. Briggs, W.C. Rauscher, An oscillating iodine clock. J. Chem. Educ. 50, 496 (1973). https://doi.org/10.1021/ed050p496

  9. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952). https://doi.org/10.1098/rstb.1952.0012

  10. V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Experimental evidence of a sustained standing turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–2956 (1990). https://doi.org/10.1103/PhysRevLett.64.2953

  11. I. Prigogine, R. Lefever, Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695–1700 (1968). https://doi.org/10.1063/1.1668896

  12. A.T. Winfree, The Geometry of Biological Time, 2nd edn. (Springer, New York, 2001)

    Book  Google Scholar 

  13. A.N. Zaikin, A.M. Zhabotinsky, Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535–537 (1970). https://doi.org/10.1038/225535b0

  14. J.J. Tyson, J.P. Keener, Singular perturbation theory of traveling waves in excitable media (a review). Physica D 32, 327–361 (1988). https://doi.org/10.1016/0167-2789(88)90062-0

  15. S.C. Müller, T. Plesser, B. Hess, Two-dimensional spectrophotometry of spiral wave propagation in the Belousov–Zhabotinskii reaction: I. Experiments and digital data representation. Physica D 24, 71–86 (1987). https://doi.org/10.1016/0167-2789(87)90067-4

  16. A.M. Pertsov, M. Wellner, J. Jalife, Eikonal relation in highly dispersive excitable media. Phys. Rev. Lett. 78, 2656–2659 (1997). https://doi.org/10.1103/PhysRevLett.78.2656

  17. C. Luengviriya, U. Storb, M.J.B. Hauser, S.C. Müller, An elegant method to study an isolated spiral wave in a thin layer of a batch Belousov–Zhabotinsky reaction under oxygen-free conditions. Phys. Chem. Chem. Phys. 8, 1425–1429 (2006). https://doi.org/10.1039/B517918A

  18. R.J. Field, R.M. Noyes, Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974). https://doi.org/10.1063/1.1681288

  19. A.F. Taylor, B.R. Johnson, S.K. Scott, Effect of oxygen on wave propagation in the ferroin-catalysed Belousov–Zhabotinsky reaction. J. Chem. Soc. Faraday Trans. 94, 1029–1033 (1998). https://doi.org/10.1039/a708600h

  20. H.-F. Eicke, J. Naudts, Non-linear field effects due to activation-energy controlled charge transport in microemulsions. Chem. Phys. Lett. 142, 106–109 (1987). https://doi.org/10.1016/0009-2614(87)87260-3

  21. V.K. Vanag, I.R. Epstein, Patterns of nanodroplets: the Belousov–Zhabotinsky–Aerosol OT-microemulsion system, in Self-Organized Morphology in Nanostructured Materials, ed. by K. Al-Shamery, J. Parisi. Springer Series in Materials Science, vol. 99 (Springer, Berlin, 2008), pp. 89–113. https://doi.org/10.1007/978-3-540-72675-3_5, ISBN: 978-3-540-72674-6

  22. L.J. Schwartz, C.L. DeCiantis, S. Chapman, B.K. Kelley, J.P. Hornak, Motions of water, decane, and Bis(2-ethylhexyl)sulfosuccinate sodium salt in reverse micelle solutions. Langmuir 15, 5461–5466 (1999). https://doi.org/10.1021/la9812119

  23. V.K. Vanag, I.R. Epstein, Pattern formation in a tunable medium: the Belousov–Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 87, 228301 (2001). https://doi.org/10.1103/PhysRevLett.87.228301

  24. V.K. Vanag, Waves and patterns in reaction-diffusion systems. Belousov–Zhabotinsky reaction in water-in-oil microemulsions. Phys.-Uspekhi 47, 923–941 (2004). https://doi.org/10.1070/PU2004v047n09ABEH001742

  25. Y. Feldman, N. Kozlovich, I. Nir, N. Garti, V. Archipov, Z. Idiyatullin, Y. Zuev, V. Fedotov, Mechanism of transport of charge carriers in the sodium Bis(2-ethylhexyl) sulfosuccinate-water-decane microemulsion near the percolation temperature threshold. J. Phys. Chem. 100, 3745–3748 (1996). https://doi.org/10.1021/jp9525595

  26. V.S. Zykov, A.S. Mikhailov, S.C. Müller, Wave instabilities in excitable media with fast inhibitor diffusion. Phys. Rev. Lett. 81, 2811–2814 (1998). https://doi.org/10.1103/PhysRevLett.81.2811

  27. D. Horváth, V. Petrov, S.K. Scott, K. Showalter, Instabilities in propagating reaction-diffusion fronts. J. Chem. Phys. 98, 6332–6343 (1993). https://doi.org/10.1063/1.465062

  28. M. Markus, G. Kloss, I. Kusch, Disordered waves in a homogeneous, motionless excitable medium. Nature 371, 402–404 (1994). https://doi.org/10.1038/371402a0

  29. P. Dähmlow, V.K. Vanag, S.C. Müller, Effect of solvents on the pattern formation in a Belousov–Zhabotinsky reaction embedded into a microemulsion. Phys. Rev. E 89, 010902 (2014). https://doi.org/10.1103/PhysRevE.89.010902

  30. Z. Nagy-Ungvarai, A.M. Pertsov, B. Hess, S.C. Müller, Lateral instabilities of a wave front in the Ce-catalyzed Belousov–Zhabotinsky reaction. Physica D 61, 205–212 (1992). https://doi.org/10.1016/0167-2789(92)90163-H

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Pfeiffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfeiffer, P. (2019). Chemical Oscillations and Spiral Waves. In: Tsuji, K., Müller, S.C. (eds) Spirals and Vortices. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-030-05798-5_8

Download citation

Publish with us

Policies and ethics