Skip to main content

Radiation Physics and Chemistry of Polymeric Materials

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

The material properties can be modified/tailored by either of the techniques available such as top-down method, bottom-up method, composite ratio variation, doping of a suitable dopant, ion beam-related methods and many others. The modifications by ion beam and radiation treatment are quite effective techniques to calibrate the physical, chemical, surface and structural properties of the materials. Polymeric materials are highly radiation sensitive and their properties can be modified by exposing the material to different ions and radiation such as gamma rays, electron and proton beams as well as swift heavy ions. The focus of the present discussion is pointed towards the radiation (mainly swift heavy ions and gamma rays) induced modification of polymeric materials and their physical and chemical aspects. The fundamental concepts of energy transfer of swift heavy ions and the post-irradiation effects such as cross-linking and chain scissoring of polymeric materials have been discussed in this chapter. The polymeric chain scissoring and cross-linking are related to the structural, chemical, surface, electrical and free volume properties of the polymers. The concept of free volume is further related to gas diffusion and separation properties of some of the polymers. The discussion is limited up to the radiation-sensitive polymers such as polymethyl methacrylate, polyethylene terephthalate and polyallyl diglycol carbonate polymers in the present chapter. The applications related to ion beam technology have been discussed in the last section of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CS:

Crystallite size

E g :

Band gap energy

FFV:

Fractional free volume

FV:

Free volume

I 3 :

Intensity of o-Ps

LET:

Linear energy transfer

o-Ps:

Ortho-positronium

PADC:

Polyally diglycol carbonate

PALS:

Positron annihilation lifetime spectroscopy

PET:

Polyethylene terephthalate

PITMs:

Polymer ion track membranes

PMMA:

Polymethyl methacrylate

p-Ps:

Para-positronium

R :

Hole radius

RGA:

Residual gas analyses

S e :

Electronic energy loss

SHI:

Swift heavy ions

S n :

Nuclear energy loss

SRIM:

Strength and range of ions in matter

SSNTDs:

Solid-state nuclear track detectors

TRIM:

Transport of ions in matter

XRD:

X-ray diffraction

Z :

Atomic number

τ 3 :

Lifetime of o-Ps

References

  1. Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students/editor. International Atomic Energy Agency Publishing, Vienna, Austria

    Google Scholar 

  2. Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials. J Appl Phys 107:071301

    Article  CAS  Google Scholar 

  3. Lee EH (1999) Ion-beam modification of polymeric materials-fundamental principles and applications. Nucl Instrum Methods Phys Res, Sect B 151:29–41

    Article  CAS  Google Scholar 

  4. Fleischer RL, Price PB, Walker RM, Hubbard EL (1967) Criterion for registration in dielectric track detectors. Phys Rev 156(353):355

    Google Scholar 

  5. Bringa EM, Johnson RE (2002) Coulomb explosion and thermal spikes. Phys Rev Lett 88:165501

    Article  CAS  PubMed  Google Scholar 

  6. Toulemonde M, Dufour Ch, Meftah A, Paumier E (2000) Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl Instrum Methods Phys Res, Sect B 166–167:903–912

    Article  Google Scholar 

  7. Toulemonde M, Dufour Ch, Wang Z, Paumier E (1996) Atomic and cluster ion bombardment in the electronic stopping power regime: a thermal spike description. Nucl Instrum Methods Phys Res, Sect B 112:26–29

    Article  CAS  Google Scholar 

  8. Szenes G (1996) Thermal spike model of amorphous track formation in insulators irradiated by swift heavy ions. Nucl Instrum Methods Phys Res, Sect B 116:141–144

    Article  CAS  Google Scholar 

  9. Awasthi K, Stamm M, Abetz V, Vijay YK (2011) Large area Cl9+ irradiated PET membranes for hydrogen separation. Int J Hydrogen Energy 36:9374–9381

    Article  CAS  Google Scholar 

  10. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM – the stopping and range of ions in matter. Nucl Instrum Methods Phys Res, Sect B 268:1818–1823

    Article  CAS  Google Scholar 

  11. Bragg WH, Kleeman R (1905) On the α particles of radium, and their loss of range in passing through various atoms and molecules. Philos Mag 10:318–340

    Article  CAS  Google Scholar 

  12. Cleland MR, Parks LA, Cheng S (2003) Applications for radiation processing of materials. Nucl Instrum Methods Phys Res, Sect B 208:66–73

    Article  CAS  Google Scholar 

  13. Lee EH, Rao GR, Mansur LK (1999) LET effect on cross-linking and scission mechanisms of PMMA during irradiation. Radiat Phys Chem 55:293–305

    Article  CAS  Google Scholar 

  14. Delgado AO, Rizzutto MA, Tabacniks MH, Added N, Fink D (2009) Infrared analysis of ion beam irradiated polymers. Nucl Instrum Methods Phys Res, Sect B 267:1546–1548

    Article  CAS  Google Scholar 

  15. Avasthi DK (2000) Some interesting aspects of swift heavy ions in materials science. Curr Sci 78:1297–1306

    CAS  Google Scholar 

  16. Avasthi DK (1998) High energy heavy ions in materials characterization at NSC pelletron. Nucl Instrum Methods Phys Res, Sect B 136–138:729–735

    Article  Google Scholar 

  17. Kanjilal D (2001) Swift heavy ion-induced modification and track formation in materials. Curr Sci 80:1560–1566

    CAS  Google Scholar 

  18. Wang YQ (2000) Ion beam analysis of ion-implanted polymer thin films. Nucl Instrum Methods Phys Res, Sect B 161–163:1027–1032

    Article  Google Scholar 

  19. Hnatowicz V, Havranek V, Bocan J, Mackova A, Vacik J, Svorcik V (2008) Modification of poly(ether ether ketone) by ion irradiation. Nucl Instrum Methods Phys Res, Sect B 266:283–287

    Article  CAS  Google Scholar 

  20. Hnatowicz V, Perina V, Mackova A, Svorcik V, Rybka V, Fink D, Heitz J (2001) Degradation of polyimide by 100 keV He+, Ne+, Ar+ and Kr+ ions. Nucl Instrum Methods Phys Res, Sect B 175–177:437–441

    Article  Google Scholar 

  21. Parada MA, Delalezv N, de Almeida A, Muntele C, Muntele I, Ila D (2006) Low energy ion beam induced changes in ETFE polymer. Nucl Instrum Methods Phys Res, Sect B 242:550–552

    Article  CAS  Google Scholar 

  22. Forsyth M, Meakin P, Macfarlane DR, Hill AJ (1995) Positron annihilation lifetime spectroscopy as a probe of free volume in plasticized solid polymer electrolytes. Electrochim Acta 40:2349–2351

    Article  CAS  Google Scholar 

  23. Peng ZL, Wang B, Li SQ, Wang SJ, Liu H, Xie HQ (1994) Investigation of ionic conductivity of polymeric electrolytes based on poly (ether urethane) networks using positron probe. Phys Lett A 194:228–234

    Article  CAS  Google Scholar 

  24. Pas SJ, Ingram MD, Funke K, Hill AJ (2005) Free volume and conductivity in polymer electrolytes. Electrochim Acta 50:3955–3962

    Article  CAS  Google Scholar 

  25. Goworek T, Rybka C (1975) Influence of polymerisation on positronium formation in acenaphtylene. Phys Lett A 53:273–274

    Article  Google Scholar 

  26. Yave W, Car A, Peinemann K, Shaikh MQ, Ratzke K, Faupel F (2009) Gas permeability and free volume in poly(amide-b-ethylene oxide)/ polyethylene glycol blend membranes. J Membr Sci 339:177–183

    Article  CAS  Google Scholar 

  27. Wang ZF, Wang B, Qi N, Ding XM, Hu JL (2004) Free volume and water vapor permeability properties in polyurethane membranes studied by positrons. Mater Chem Phys 88:212–216

    Article  CAS  Google Scholar 

  28. Algers J, Suzuki R, Ohdaira T, Maurer FHJ (2004) Characterization of free volume and density gradients of polystyrene surfaces by low-energy positron lifetime measurements. Polymer 45:4533–4539

    Article  CAS  Google Scholar 

  29. Dlubek G, Stejny J, Lupke TH, Bamford D, Petters K, Hubner CH, Alam MA, Hill MJ (2002) Free-volume variation in polyethylenes of different crystallinities: positron lifetime, density, and X-Ray Studies. J Polym Sci, Part B: Polym Phys 40:65–81

    Article  CAS  Google Scholar 

  30. Wate S, Acharya NK, Bhahada KC, Vijay YK, Tripathi A, Avasthi DK, Das D, Ghughre S (2005) Positron annihilation lifetime and gas permeation studies of energetic ion-irradiated polycarbonate membranes. Radiat Phys Chem 73:296–301

    Article  CAS  Google Scholar 

  31. Choudalakis G, Gotsis AD (2012) Free volume and mass transport in polymer nanocomposites. Curr Opin Colloid Interface Sci 17:132–140

    Article  CAS  Google Scholar 

  32. Gidley DW, Peng HG, Vallery RS (2006) Positron annihilation as a method to characterize porousmaterials. Annu Rev Mater Res 36:49–79

    Article  CAS  Google Scholar 

  33. Singh P, Kumar R, Cyriac J, Rahul MT, Nambissan PMG, Prasad RR (2014) High energy (MeV) ion fluence dependent nano scale free volume defects studies of PMMA films. Nucl Instrum Meth Phys Res B 320:64–69

    Article  CAS  Google Scholar 

  34. Singh P, Kumar R, Singh R, Roychowdhury A, Das D (2015) The influence of cross-linking and clustering upon the nanohole free volume of the SHI and γ-radiation induced polymeric material. Appl Surf Sci 328:482–490

    Article  CAS  Google Scholar 

  35. Tao SJ (1972) The Positron annihilation in molecular substances. J Phys Chem B 105:4657–4662

    Google Scholar 

  36. Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58

    Article  CAS  Google Scholar 

  37. Nakanishi H, Wang SJ, Jean YC (1988) In: Sharma SC (ed) (1988) Positron annihilation studies of fluids (p. 292). World Scientific Publishing Co. Ltd. Singapore

    Google Scholar 

  38. Wang YY, Nakanishi H, Jean YC, Sandreczki TC (1990) Positron annihilation in amine-cured epoxy polymers—pressure dependence. J Polym Sci, Part B: Polym Phys 28:1431–1441

    Article  CAS  Google Scholar 

  39. Socol G, Macovei AM, Miroiu F, Stefan N, Duta L, Dorcioman G, Mihailescu IN, Petrescu SM, Stan GE, Marcov DA, Chiriac A, Poeata I (2010) Hydroxyapatite thin films synthesized by pulsed laser deposition and magnetron sputtering on PMMA substrates for medical applications. Mater Sci Eng, B 169:159–168

    Article  CAS  Google Scholar 

  40. Erbe EM, Clineff TD, Gualtieri G (2001) Comparison of a new bisphenol-a-glycidyl dimethacrylate-based cortical bone void filler with polymethyl methacrylate. Eur Spine J 10:S147–S152

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mladenov GM, Braun M, Emmoth B, Biersack JP (1985) Ion beam impact and penetration of polymethyl methacrylate. J Appl Phys 58(7):2534–2538

    Article  CAS  Google Scholar 

  42. Nathawat R, Kumar A, Acharya NK, Vijay YK (2009) XPS and AFM surface study of PMMA irradiated by electron beam. Surf Coat Technol 203:2600–2604

    Article  CAS  Google Scholar 

  43. Hall TM, Wagner A, Thompson LFJ (1982) Ion beam exposure characteristics of resists: experimental results. Appl Phys 53:3997–4010

    Article  CAS  Google Scholar 

  44. Corelli JC, Steckle AJ, Pulver D (1987) Ultralow dose effects in ion-beam induced grafting of polymethylmethacrylate (PMMA). Nucl Instrum Meth Phys Res B19(20):1009–1021

    Article  Google Scholar 

  45. Davenas J, Xu XL, Khodr C, Treilleux M, Stefan G (1985) A percolation approach to ion beam induced modifications of organic resists. Nucl Instrum Meth Phys Res B 7(8):513–516

    Article  Google Scholar 

  46. Hossain UH, Lima V, Ensinger W, Baake O, Severin D, Bender M (2014) On-line and post irradiation analysis of swift heavy ion induced modification of PMMA (polymethyl-methacrylate). Nucl Instrum Methods Phys Res, Sect B 326:135–139

    Article  CAS  Google Scholar 

  47. Magee JL, Chatterjee A (1987) In: Farhataziz, Rodgers, MAJ (eds) Radiation chemistry, principles and applications. VCH Publishers, New York

    Google Scholar 

  48. Magee JL, Chatterjee A (1987) In: Freeman, GR (ed) Kinetics of nonhomogeneous processes (p. 189). Wiley, New York

    Google Scholar 

  49. ICRU Report 31 (1979) Average energy required to produce an ion pair, international commission on radiation units and measurements. Washington, DC

    Google Scholar 

  50. Fink D, Muller M, Ghosh S, Dwivedi KK, Vacik J, Hnatowicz V, Cervena J, Kobayashi Y (1999) Hirata K New ways of polymeric ion track characterization. Nucl Instrum Methods Phys Res, Sect B 156:170–176

    Article  CAS  Google Scholar 

  51. Nathawat R, Kumar A, Kulshrestha V, Vijay YK, Kobayashi T, Kanjilal D (2008) Study of surface activation of PET by low energy (keV) Ni+ and N+ ion implantation. Nucl Instrum Methods Phys Res, Sect B 266:4749–4756

    Article  CAS  Google Scholar 

  52. Rarganathaiah C (2006) Free volume micro probe study of silver ions implanted in polycarbonate. High Perform Polym 18:933–947

    Article  CAS  Google Scholar 

  53. Ismayil RV, Bhajantri RF, Praveena SD, Poojary B, Dutta D, Pujari PK (2010) Optical and microstructural studies on electron irradiated PMMA: a positron annihilation study. Polym Degrad Stab 95:1083–1091

    Article  CAS  Google Scholar 

  54. Liao K-S, Chen H, Awad S, Yuan J-P, Hung W-S, Lee K-R, Lai J-Y, Hu C-C, Jean YC (2011) Determination of free-volume properties in polymers without orthopositronium components in positron annihilation lifetime spectroscopy. Macromolecules 44:6818–6826

    Article  CAS  Google Scholar 

  55. Consolati G (2007) Temperature dependence of nanoholes free volumes in amorphous polymers. Radiat Phys Chem 76:313–317

    Article  CAS  Google Scholar 

  56. Unai S, Puttaraksa N, Pussadee N, Singkarat K, Rhodes MW, Whitlow HJ, Singkarat S (2013) Fast and blister-free irradiation conditions for cross-linking of PMMA induced by 2 MeV protons. Microelectron Eng 102:18–21

    Article  CAS  Google Scholar 

  57. Yun Y, Pearson C, Cadd DH, Thompson RL, Petty MC (2009) A cross-linked poly(methyl methacrylate) gate dielectric by ion-beam irradiation for organic thin-film transistors. Org Electron 10:1596–1600

    Article  CAS  Google Scholar 

  58. Hong W, Woo HJ, Choi HW, Kim YS, G-d Kim (2001) Optical property modification of PMMA by ion-beam implantation. Appl Surf Sci 169–170:428–432

    Article  Google Scholar 

  59. Singh D, Singh NL, Qureshi A, Kulriya P, Tripathi A, Avasthi DK, Gulluoglu AN (2010) Radiation induced modification of dielectric and structural properties of Cu/PMMA polymer composites. J Non-Cryst Solids 356:856–863

    Article  CAS  Google Scholar 

  60. Wang YQ, Curry M, Tavenner E, Dobson N, Giedd RE (2004) Ion beam modification and analysis of metal/polymer bi-layer thin films. Nucl Instrum Methods Phys Res, Sect B 219–220:798–803

    Article  CAS  Google Scholar 

  61. Qureshi A, Singh NL, Shah S, Kulriya P, Singh F, Avasthi DK (2008) Modification of polymer composite films using 120 MeV Ni10+ ions. Nucl Instrum Methods Phys Res, Sect B 266:1775–1779

    Article  CAS  Google Scholar 

  62. Qiao H, Wei Z, Yang H, Zhu L, Yan X (2009) Preparation and characterization of NiO nanoparticles by anodic arc plasma method. J Nanomater 2009:795928

    Article  CAS  Google Scholar 

  63. Gleiter H (1990) Nanocrystalline materials. Prog Mater Sci 33:223–315

    Article  Google Scholar 

  64. Wang ZL, Liu Y, Zhang Z (2002) Handbook of nanophase and nanostructed materials. Tsinghua University Press, Beijing, China

    Google Scholar 

  65. Matsumoto M, Miyata Y (2002) Polymer absorbers containing magnetic particles: effect of polymer permittivity on wave absorption in the quasi-microwave band. J Appl Phys 91:9635–9637

    Article  CAS  Google Scholar 

  66. Gavade C, Singh NL, Avasthi DK, Banerjee A (2010) Effect of SHI on dielectric and magnetic properties of metal oxide/PMMA nanocomposites. Nucl Instrum Methods Phys Res, Sect B 268:3127–3131

    Article  CAS  Google Scholar 

  67. Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41:1453–1477

    Article  CAS  Google Scholar 

  68. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S (2005) Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26:2527–2536

    Article  CAS  PubMed  Google Scholar 

  69. Yampolskii Y (2012) Polymeric gas separation membranes. Macromolecules 45:3298–3311

    Article  CAS  Google Scholar 

  70. Awasthi K, Kulshrestha V, Acharya NK, Singh M, Vijay YK (2006) Ion transport through track etched polypropylene membrane. Euro Polym J 42:883–887

    Article  CAS  Google Scholar 

  71. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262

    Article  CAS  Google Scholar 

  72. Tripathi B, Vijay YK (2010) Engineering nanoporosity for Ti+6 ion irradiated Mylar (PET) polymer by positron beam. Int J Hydrogen Energy 35:5419–5422

    Article  CAS  Google Scholar 

  73. Beginn U, Zipp G, Mourran A, Walther P, Moller M (2000) Membranes containing oriented supramolecular transport channels. Adv Mater 12:513–516

    Article  CAS  Google Scholar 

  74. Hicke HG, Becker M, Paulke BR, Ulbricht M (2006) Covalently coupled nanoparticles in capillary pores as enzyme carrier and as turbulence promoter to facilitate enzymatic polymerization reactions in flow through enzyme-membrane reactors. J Membr Sci 282:413–422

    Article  CAS  Google Scholar 

  75. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663

    Article  CAS  Google Scholar 

  76. Kumar R, De U, Nambissan PMG, Maitra M, Ali SA, Middya TR, Tarafdar S, Singh F, Avasthi DK, Prasad R (2008) Positron lifetime studies of the dose dependence of nanohole free volumes in ion-irradiated conducting poly- (ethylene-oxide)–salt polymers. Nucl Instrum Methods Phys Res, Sect B 266:1783–1787

    Article  CAS  Google Scholar 

  77. Kumar R, Singh P (2015) Influence of SHI upon nanohole free volume and micro scale level surface modifications of polyethyleneterephthalate polymer films. Appl Surf Sci 337:19–26

    Article  CAS  Google Scholar 

  78. Singh P, Kumar R, Nambissan PMG (2015) Investigation of in-depth and surface properties of polyethyleneterephthalate thin films after SHI and gamma radiation treatment by means of PALS and AFM studies. Vacuum 115:31–38

    Article  CAS  Google Scholar 

  79. Awasthi K, Kulshrestha V, Avasthi DK, Vijay YK (2010) Optical, chemical and structural modification of oxygen irradiated PET. Radiat Meas 45:850–855

    Article  CAS  Google Scholar 

  80. Ramola RC, Negi A, Semwal A, Chandra S, Rana JMS, Sonkawade RG, Kanjilal D (2011) High-energy heavy-ion irradiation effects in makrofol-KG polycarbonate and PET. J Appl Polym Sci 121:3014–3019

    Article  CAS  Google Scholar 

  81. Biswas A, Lotha S, Fink D, Singh JP, Avasthi DK, Yadav BK, Bose SK, Khating DT, Avasthi AM (1999) The effects of swift heavy ion irradiation on the radiochemistry and melting characteristics of PET. Nucl Instrum Methods Phys Res, Sect B 159:40–51

    Article  CAS  Google Scholar 

  82. Prasad SG, De A, De U (2011) Structural and optical investigations of radiation damage in transparent PET polymer films. Int J Spectros Article ID 810936 (p. 7) https://doi.org/10.1155/2011/810936

    Article  CAS  Google Scholar 

  83. Metzger A (2009) Polyethylene Terephthalate and the Pillar™ Palatal Implant: its historical usage and durability in medical applications. Medtronic, Inc. Pillar

    Google Scholar 

  84. http://www.webmd.com/heart-disease/tc/endocarditis-topic-overview#1

  85. Ionescu A, Payne N, Fraser AG, Giddings J, Grunkemeier GL, Butchart EG (2003) Incidence of embolism and paravalvar leak after St Jude Silzone valve implantation: experience from the Cardiff Embolic Risk Factor Study. Heart 89:1055–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lansdown ABG (2010) Silver in healthcare: its antimicrobial efficacy and safety in use, p 160, Chap. 7. RSC Publishing. ISBN: 978-1-84973-006-8

    Google Scholar 

  87. Jin W, Jianxin L, Liru S, Ling R, Zejin X, Ansha Z, Yongxiang L, Nan H (2007) The biomedical properties of polyethylene terephthalate surface modified by silver ion implantation. Nucl Instrum Methods Phys Res, Sect B 257:141–145

    Article  CAS  Google Scholar 

  88. Li JX, Wang J, Shen LR, Xu ZJ, Li P, Wan GJ, Huang N (2007) The influence of polyethylene terephthalate surfaces modified by silver ion implantation on bacterial adhesion behaviour. Surf Coat Technol 201:8155–8159

    Article  CAS  Google Scholar 

  89. Abdul-Kader AM (2014) Surface modifications of PADC polymeric material by ion beam bombardment for high technology applications. Radiat Meas 69:1–6

    Article  CAS  Google Scholar 

  90. Ramola RC, Chandra S, Rana JMS, Sonkawade RG, Kulriya PK, Singh F, Avasthi DK, Annapoorni S (2008) A comparative study of the effect of O+7 ion beam on polypyrrole and CR-39 (DOP) polymers. J Phys D: Appl Phys 41:11541

    Article  CAS  Google Scholar 

  91. El-Saftawy AA, Abdel Reheem AM, Kandil SA, Abd El Aal SA, Salama S (2016) Comparative studies on PADC polymeric detector treated by gamma radiation and Ar ion beam. Appl Surf Sci 371:596–606

    Article  CAS  Google Scholar 

  92. Kalsi PC, Agarwal C (2008) Neutron-irradiation effects on track etching and optical characteristics of CR-39 (DOP) nuclear track detector. J Mater Sci 43:2865–2868

    Article  CAS  Google Scholar 

  93. Zaki MF (2008) Gamma induced modification on optical band gap energy of CR-39 SSNTD. J Phys D Appl Phys 41:175404

    Article  CAS  Google Scholar 

  94. El-Badry BA, Zaki MF, Abdul-Kader AM, Hegazy TM, Morsy AA (2009) Ion bombardment of poly-allyl-diglycol-carbonate (CR-39). Vacuum 83:1138–1142

    Article  CAS  Google Scholar 

  95. Kumar R, Singh P (2013) UV–visible and infrared spectroscopic studies of Li3+ and C5+ irradiated PADC polymer. Results Phys 03:122–128

    Article  Google Scholar 

  96. Singh P, Kumar R (2013) Study of structural and free volume properties of swift heavy ion irradiated polyallyl diglycol carbonate polymer films. Vacuum 96:46–51

    Article  CAS  Google Scholar 

  97. Makkonen-Craigi S, Paronen M (2014) Potential large-scale applications of track-etched ultrafiltration polymer membranes. Arcada Working Papers 12, ISBN: 978-952-5260-54-0, ISSN: 2342-3064

    Google Scholar 

  98. Orlova AO, Gromova YA, Savelyeva AV, Maslov VG, Artemyev MV, Prudnikau A, Fedorov AV, Baranov AV (2011) Track membranes with embedded semiconductor nanocrystals: structural and optical examinations. Nanotechnology 22:455201

    Article  CAS  PubMed  Google Scholar 

  99. Ueno M, Imanishi N, Hanai K, Kobayashi T, Hirano A, Yamamoto O, Takeda Y (2011) Electrochemical properties of cross-linked polymer electrolyte by electron beam irradiation and application to lithium ion batteries. J Power Sources 196:4756–4761

    Article  CAS  Google Scholar 

  100. Chmielewski AG, Haji-Saeid M, Ahmed S (2005) Progress in radiation processing of polymers. Nucl Instrum Methods Phys Res, Sect B 236:44–54

    Article  CAS  Google Scholar 

  101. Jagielski J, Turos A, Bielinski D, Abdul-Kader AM, Piatkowska A (2007) Ion-beam modified polymers for biomedical applications. Nucl Instrum Methods Phys Res, Sect B 261:690–693

    Article  CAS  Google Scholar 

  102. Singh NL, Shah N, Singh KP, Desai CF (2005) Electrical and thermal behavior of proton irradiated polymeric blends. Radiat Meas 40:741–745

    Article  CAS  Google Scholar 

  103. Singh NL, Shah S, Qureshi A, Singh F, Avasthi DK, Ganesan V (2008) Swift heavy ion induced modification in dielectric and microhardness properties of polymer composites. Polym Degrad Stab 93:1088–1093

    Article  CAS  Google Scholar 

  104. Singh NL, Qureshi A, Singh F, Avasthi DK (2007) Effect of swift heavy ion irradiation on dielectrics properties of polymer composite films. Mater Sci Eng, B 137:85–92

    Article  CAS  Google Scholar 

  105. Shah S, Qureshi A, Singh NL, Singh KP, Avasthi DK (2008) Dielectric response of proton irradiated polymer composite films. Radiat Meas 3:S603–S606

    Article  CAS  Google Scholar 

  106. Shah S, Singh NL, Qureshi A, Singh D, Singh KP, Shrinet V, Tripathi A (2008) Dielectric and structural modification of proton beam irradiated polymer composite. Nucl Instrum Methods Phys Res, Sect B 266:1768–1774

    Article  CAS  Google Scholar 

  107. Qureshi A, Singh NL, Rakshit AK, Singh F, Avasthi DK (2007) Swift heavy ion induced modification in polyimide films. Surf Coat Technol 201:8308–8311

    Article  CAS  Google Scholar 

  108. Siljegovic M, Kacarevic-Popovic ZM, Krkljes AN, Stojanovic Z, Jovanovic ZM (2011) Effect of N4+ and C4+ ion beam bombardment on the optical and structural characteristics of ethylene–norbornene copolymer (TOPAS). Nucl Instrum Methods Phys Res, Sect B 269:708–715

    Article  CAS  Google Scholar 

  109. Nagata S, Konishi Y, Tsuchiya B, Toh K, Yamamoto S, Takahiro K, Shikama T (2007) Ion beam effects on electrical characteristics of proton conductive polymer. Nucl Instrum Methods Phys Res, Sect B 257:519–522

    Article  CAS  Google Scholar 

  110. Radwan RM, Abdul-Kader AM, El-Hag Ali A (2008) Ion bombardment induced changes in the optical and electrical properties of polycarbonate. Nucl Instrum Methods Phys Res, Sect B 266:3588–3594

    Article  CAS  Google Scholar 

  111. Hadjichristov GB, Gueorguiev VK, Ivanov TE, Marinov YG, Ivanov VG, Faulques E (2008) Silicon ion implanted PMMA for soft electronics. Org Electron 9:1051–1060

    Article  CAS  Google Scholar 

  112. Dworecki K, Hasegawa T, Sudlitz K, Slezak A, Wasik S (2001) Modification of electrical properties of polymer membranes by ion implantation. Nucl Instrum Methods Phys Res, Sect B 185:61–65

    Article  CAS  Google Scholar 

  113. Dworecki K, Hasegawa T, Sudlitz K, Slezak A, Wasik S (2000) Modification of electrical properties of polymer membranes by ion implantation. Nucl Instrum Methods Phys Res, Sect B 166–167:646–649

    Article  Google Scholar 

  114. Mishra R, Tripathy SP, Sinha D, Dwivedi KK, Ghosh S, Khathing DT, Muller M, Fink D, Chung WH (2000) Optical and electrical properties of some electron and proton irradiated polymers. Nucl Instrum Methods Phys Res, Sect B 168:59–64

    Article  CAS  Google Scholar 

  115. Odzhaev VB, Popok VN, Kozlova EI, Jankovskij ON, Karpovich IA (2000) Electrical properties of polyethylene modified by ion implantation and diffusion. Nucl Instrum Methods Phys Res, Sect B 166–167:655–659

    Article  Google Scholar 

  116. Odzhaev VB, Jankovsky ON, Karpovich IA, Partyka J, Wegierek P (2001) Electrical properties of polyethylene modified by multistage ion implantation. Vacuum 63:581–583

    Article  CAS  Google Scholar 

  117. Wu Y, Zhang T, Zhang H, Zhang X, Deng Z, Zhou G (2000) Electrical properties of polymer modified by metal ion implantation. Nucl Instrum Methods Phys Res, Sect B 169:89–93

    Article  CAS  Google Scholar 

  118. Ahmed SF, Rho GH, Lee JY, Kim SJ, Kim HY, Jang YJ, Moon MW, Lee KR (2010) Nano-embossed structure on polypropylene induced by low energy Ar ion beam irradiation. Surf Coat Technol 205:S104–S108

    Article  CAS  Google Scholar 

  119. Ektessabi AM, Yamaguchi K (2000) Changes in chemical states of PET films due to low and high energy oxygen ion beam. Thin Solid Films 377–378:793–797

    Article  Google Scholar 

  120. Zhang Y, Huan ACH, Tan KL, Kang ET (2000) Surface modification of poly(tetrafluoroethylene) films by low energy Ar+ ion-beam activation and UV-induced graft copolymerization. Nucl Instrum Methods Phys Res, Sect B 168:29–39

    Article  CAS  Google Scholar 

  121. Darraud-Taupiac C, Binsangou V, Isabey R, Duverger E, Decossas JL, Makovicka L, Vareille JC (2000) Topographical modifications in PADC polymer under electron beam irradiation. Polym 41:6295–6299

    Article  CAS  Google Scholar 

  122. Yotoriyama T, Suzuki Y, Mise T, Tsukamoto T, Iwaki M (2005) Surface characterization of thin film induced by He+ ion-beam irradiation into PLLA. Surf Coat Technol 196:383–388

    Article  CAS  Google Scholar 

  123. Tripathi A, Kumar A, Singh F, Kabiraj D, Avasthi DK, Pivin JC (2005) Ion irradiation induced surface modification studies of polymers using SPM. Nucl Instrum Methods Phys Res, Sect B 236:186–194

    Article  CAS  Google Scholar 

  124. Zhang Z, Zhang Y, Yang K, Yi K, Zhou Z, Huang A, Mai K, Lu X (2015) Three-dimensional carbon nanotube/ethylvinylacetate/ polyaniline as a high performance electrode for supercapacitors. J Mater Chem A 03:1884–1889

    Article  CAS  Google Scholar 

  125. Singh P (2017) Composites based on conducting polymers and carbon nanotubes for supercapacitors. In: Kumar V, Kalia S, Swart H (eds) Composites based on conducting polymers and carbon nanotubes for supercapacitors, 1st edn. Springer, Switzerland, p 333

    Google Scholar 

  126. Singh P, Kumar R (2014) Influence of high-energy ion irradiation on the structural, optical, and chemical properties of polytetrafluoroethylene. Adv Polym Technol 33:21410

    Article  CAS  Google Scholar 

  127. Singh P, Kumar S, Prasad R, Kumar R (2014) Study of physical and chemical modifications induced by 50 MeV Li3+ ion beam in polymers. Radiat Phys Chem 94:54–57

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit Singh .

Editor information

Editors and Affiliations

Appendix

Appendix

The crystallite size (C.S.) can be calculated using Scherrer formula given below [126]:

$$L = \frac{k\lambda }{b\cos \theta }$$

Here, b is the full width at half maximum (FWHM) of the XRD peak (in radian), \(\lambda\) is the wavelength of the X-rays used (1.54 Å in most of the cases for Cu Kα radiation), and θ is the angle which is calculated by taking \(\frac{1}{2}\) of 2θ value in above equation. k is a constant of proportionality (called the Scherrer constant), and its value depends on how the width is determined and the shape of the crystal. The value of k is 0.9 for polymeric samples.

The optical band gap energy (Eg) can be calculated from the absorption spectra by extrapolating the linear portion of the plot of \(\left( {\alpha h\nu } \right)^{n}\) against \(\left( {h\nu } \right)\) to the energy axis. The value of \(E_{\text{g}}\) is calculated using Tauc’s relation given below [127]:

$$\left( {\alpha h\nu } \right)^{n} = B \left( {h\nu - E_{\text{g}} } \right)$$

Here, \(E_{\text{g}}\) is average band gap energy of the material. B in the above equation is the band tailing parameter that depends on the transition probability and can be assumed to be constant within the optical frequency range. The value of n characterizes the transition processes in K-space. Its value is 2, 3, \(\frac{1}{2}\) and \(\frac{3}{2}\) for direct allowed, direct forbidden, indirect allowed and indirect forbidden transitions, respectively. Here, \(\alpha\) is known as the optical absorption coefficient and its value is calculated from the absorbance (A), after correction for reflection losses using the equation: \(\alpha \left( \nu \right) = \frac{2.303A}{l}\). Here, l is the sample thickness in centimetres.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Kumar, R. (2019). Radiation Physics and Chemistry of Polymeric Materials. In: Kumar, V., Chaudhary, B., Sharma, V., Verma, K. (eds) Radiation Effects in Polymeric Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05770-1_2

Download citation

Publish with us

Policies and ethics