Skip to main content

Sinterability of Y-Doped BaZrO3 with Micro- and Nano-CaO Additives and Its Interaction with Titanium Alloy

  • Conference paper
  • First Online:
Characterization of Minerals, Metals, and Materials 2019

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 2429 Accesses

Abstract

The effects of micro - and nano-CaO additive on the sinterability of Y-doped BaZrO3 and its interface reaction with titanium alloys were investigated. The 10 mol% micro - and nano-CaO is doped into BaZr0.97Y0.03O3 (BZY), respectively. The sinterability of BZY with micro - and nano-CaO was investigated by density analyzer, SEM and XRD . The relative density of BZY pellets with micro - and nano-CaO addition improved from 88% to 97.5% and 98% at 1750 °C for 6 h, respectively. XRD and SEM (BSE) show no secondary phase in the two sintered ceramics, which indicates that a single phase of cubic perovskite-type structure of Ca-modified BZY can be obtained. After melted titanium alloys , the erosion layer is 70 μm with nano-CaO addition, while a 310 μm erosion layer with micro -CaO addition. This shows that nano-CaO can be used as an appropriate sintering aid and can prevent the Y-doped BaZrO3 refractory from erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu X (2006) Review of alloy and process development of TiAl alloys. Intermetallics 14(10):1114–1122

    Article  CAS  Google Scholar 

  2. Boyerr RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng, A 213(1–2):103–114

    Article  Google Scholar 

  3. Niinomi M, Boehlert CJ (2006) Titanium alloys for biomedical applications. Mater Sci Eng C 26(8):1269–1277

    Article  Google Scholar 

  4. Frebzel J, Zhang Z, Neuking K et al (2004) High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles. J Alloy Compd 385(1):214–223

    Article  Google Scholar 

  5. Zhang Q, Zhou X, Liu HB et al (2008) Interaction between boron nitride and the melted TiNi alloy. Shanghai Univ (in Chinese) 5:537–540

    Article  Google Scholar 

  6. Liu HB, Shen B, Zhu M et al (2008) Reaction between Ti and boron nitride based investment shell molds used for casting titanium alloys. Rare Met 27(6):617–622

    CAS  Google Scholar 

  7. Faran E, Gotman I, Gutmanas EY (2000) Experimental study of the reaction zone at boron nitride ceramic-Ti metal interface. Mater Sci Eng A 288(1):66–74

    Article  Google Scholar 

  8. Lin XD, Xue XY, Zhong H et al (2013) Interface reaction between ceramic moulds and high Nb-TiAl alloys. Rare Metal Mater Eng 42(8):1568–1571

    Article  CAS  Google Scholar 

  9. Eatesami D, Hadavi MM, Habibollahzade A (2009) Melting of γ-TiAl in the alumina crucible. Russ J Non-Ferrous Metals 5(4):363–367

    Article  Google Scholar 

  10. Erb A, Walker E, Fliikiger R (1995) BaZrO3: the solution for the crucible corrosion problem during the single crystal growth of high Tc superconductors REBa2Cu3O7-d; RE = Y, Pr. Physica C 245(3–4):245–251

    Article  CAS  Google Scholar 

  11. Zhang Z, Zhu KL, Liu LJ et al (2013) Preparation of BaZrO3 crucible and its interfacial reaction with molten titanium alloys. J Chin Ceram Soc 41(9):1278–1283

    CAS  Google Scholar 

  12. He J, Wei C, Li MY et al (2015) Interface reaction between BaZrO3 refractory and melted TiAl alloys. Trans Nonferrous Met Soc China (in Chinese) 6(25):1505–1511

    Google Scholar 

  13. Chen GY, Chen ZW, Wang SS et al (2016) Interfacial reaction between high reactivity titanium melt and BaZrO3 refractory. J Chin Ceram Soc 44(6):890–895

    CAS  Google Scholar 

  14. Fabbri E, Pergolesi D, Licoccia S et al (2010) Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1-xYxO3-d fuel cell electrolytes. Solid State Ionics 181(21–22):1043–1051

    Article  CAS  Google Scholar 

  15. Sun WP, Yan LT, Shi Z et al (2010) Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3-d electrolyte membrane. J Power Sources 195(15):4727–4730

    Article  CAS  Google Scholar 

  16. Lin CM, Wang SS, Chen GY et al (2016) Thermodynamic evaluation of the BaO-ZrO2-YO1.5 system. Ceram Int 42(12):13738–13747

    Article  CAS  Google Scholar 

  17. Li CH, Li MY, Zhang H et al (2017) Fabrication of Y2O3 doped BaZrO3 coating on Al2O3 applied to solidification of titanium alloy. Surf Coat Technol 320:146–152

    Article  CAS  Google Scholar 

  18. Schober T, Bohn HG (2000) Water vapor solubility and electrochemical characterization of the high temperature proton conductor BaZr0.9Y0.1O2.95. Solid State Ion 127(3):351–360

    Article  CAS  Google Scholar 

  19. Wang H, Peng R, Wu X et al (2009) Sintering behavior and conductivity study of yttrium-doped BaCeO3-BaZrO3 solid solutions using ZnO additives. J Am Ceram Soc 92(11):2623–2629

    Article  CAS  Google Scholar 

  20. Babilo P, Haile SM (2005) Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J Am Ceram Soc 88(9):2362–2368

    Article  CAS  Google Scholar 

  21. Gao D, Guo R (2010) Structural and electrochemical properties of yttrium-doped barium zirconate by addition of CuO. J Alloy Compd 493(1–2):288–293

    Article  CAS  Google Scholar 

  22. Gao DY, Guo RS (2010) Densification and properties of barium zirconate ceramics by addition of P2O5. Mater Lett 64(5):573–575

    Article  CAS  Google Scholar 

  23. Han D, Shinoda K, Tsukimoto S et al (2014) Origins of structural and electrochemical influence on Y-doped BaZrO3 heat-treated with NiO additive. J Mater Chem A 2(31):61–63

    Google Scholar 

  24. Chen GY, Li BT, Gao PY et al (2017) Effect of CaO on preparation of BaZrO3 refractory and its interfacial reaction to titanium alloy. J Chin Ceram Soc 45(9):1354–1359

    CAS  Google Scholar 

  25. Sakuma N, Mitsui T, Kurabe H et al (2009) TiAl melting in CaO crucible and its mechanical properties. Iron Steel Inst Jpn 78(4):680–687

    Article  Google Scholar 

  26. Sun TT, Jiang M, Li CH et al (2011) Modification of CaO refractory for melting titanium alloys and its hydration resistance. Adv Mater Res 177:502–505

    Article  CAS  Google Scholar 

  27. Chen GY, Li BT, Zhang H et al (2016) On the modification of hydration resistance of CaO with ZrO2 additive. Int J Appl Ceram Technol 13(6):1173–1181

    Article  CAS  Google Scholar 

  28. Huang CE, Lu XR, Lu MY et al (2017) Effect of CaO/SnO2 additives on the microstructure and microwave dielectric properties of SrTiO3-LaAlO3 ceramics. Ceram Int 43(13):10624–10627

    Article  CAS  Google Scholar 

  29. Chen GH (2008) Sintering, crystallization, and properties of CaO doped cordierite-based glass–ceramics. J Alloy Compd 455(1):298–302

    Article  CAS  Google Scholar 

  30. Lai YQ, Zhang Y, Zhang G et al (2008) Effect of CaO doping on densification of 10NiO-NiFe2O4 composite ceramics. Chin J Nonferrous Metals 18(5):851–855

    Google Scholar 

  31. Chen GY, Kang JY, Gao PY et al (2018) Effect of CaO additive on the interfacial reaction between the BaZrO3 refractory and titanium enrichment melt. Rare metal technology 2018. The minerals, metals & materials series. https://doi.org/10.1007/978-3-319-72350-1_22

    Chapter  Google Scholar 

  32. Zhang XP, Chen SJ, Li GH et al (2008) Effect of nanosized TiO2 additive on the microstructure and sintering characteristics of Al2O3 ceramics. J Chin Ceram Soc 36(4):494–497

    Article  CAS  Google Scholar 

  33. Liu Y, Wu CL, Huang WZ et al (2006) Effect of nano-Al2O3 powder additive on sintering behaviors of alumina ceramics. J Anhui Univ Sci Technol (Nat Sci) 26(01):41–44

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (No.: 51574164, U1760109); Basic Major Research Program of Science and Technology Commission Foundation of Shanghai (No.: 14JC1491400). China Postdoctoral Science Foundation funded project (2018M632081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chonghe Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang, J., Chen, G., Lan, B., Wang, S., Lu, X., Li, C. (2019). Sinterability of Y-Doped BaZrO3 with Micro- and Nano-CaO Additives and Its Interaction with Titanium Alloy. In: Li, B., et al. Characterization of Minerals, Metals, and Materials 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05749-7_7

Download citation

Publish with us

Policies and ethics