Skip to main content

Thermal Analysis of a Cylindrical Sintered Wick Heat Pipe

  • Chapter
  • First Online:
  • 609 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 102))

Abstract

The aim of this paper is to present approaches undertaken in analysing the thermal performance of a cylindrical heat pipe with copper-sintered wick. The approaches employed are the thermal resistance network, the lumped capacitance method (LCM) and two-dimensional numerical CFD simulation. The predicted variation of the evaporator temperature with different heat inputs were compared against experimental data. The accuracy of the prediction was also determined by finding the percentage difference of the calculated results with that from the experiments. All methods have shown to produce results that are in good agreement with the experimental works. The best method is the LCM, giving predictions that deviate from experimental data by as much as 3.9%, followed by the thermal resistance network and the numerical simulation with maximum percentage differences of 4.6 and 9.8%, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

δ :

Thickness (m)

\(\dot{Q}\) :

Heat input (W)

ε :

Wick porosity (fraction)

Nu :

Nusselt number

μ :

Dynamic viscosity (kg/m s)

ρ :

Density (kg/m3)

C :

Thermal capacity (J/K)

cp :

Specific heat capacity (J/kg K)

d :

Diameter of the heat pipe (m)

h :

Convection heat transfer coefficient (W/m2 K)

k :

Thermal conductivity of material (W/m K)

L :

Length of the section (m)

Pr :

The Prandtl number

R :

Thermal resistance (W/K)

r :

Radius of the heat pipe (m)

Re :

The Reynold number

T :

Temperature (K)

t :

Time (s)

τ :

Time constant (s)

∞:

Ambient condition

conv :

Convection at the condenser

eff :

Effective

a :

Adiabatic section

c :

Condenser section

e :

Evaporator section

i :

Inner of the heat pipe

l :

Liquid in the wick

o :

Outer of the heat pipe

p :

Heat pipe wall

w :

Wick

p, c:

Pipe wall at the condenser

p, e:

Pipe wall at the evaporator

tot :

Overall

w, c:

Liquid-wick combination at the condenser

w, e:

Liquid-wick combination at the evaporator

References

  1. Tu, S.-T., Zhang, H., Zhou, W.-W.: Corrosion failures of high temperature heat pipes. Eng. Fail. Anal. 6, 363–370 (1999). https://doi.org/10.1016/S1350-6307(98)00057-0

    Article  Google Scholar 

  2. Ting, C., Chen, C.: Analyzing the heat transfer property of heat pipe influenced by integrated cooling apparatus. Chin. J. Eng. 2014, 1–10 (2014)

    Article  Google Scholar 

  3. Yang, X., Yan, Y.Y., Mullen, D.: Recent developments of lightweight, high performance heat pipes. Appl. Therm. Eng. 33–34, 1–14 (2012). https://doi.org/10.1016/j.applthermaleng.2011.09.006

    Article  Google Scholar 

  4. Faghri, A.: Heat pipes: review, opportunities and challenges. Front. Heat Pipes 5 (2014) https://doi.org/10.5098/fhp.5.1

  5. Nandy, P., Ariantara, B., Pamungkas, R.A.: Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Appl. Therm. Eng. 9, 1616–1620 (2016). https://doi.org/10.1016/j.applthermaleng.2016.01.123

    Article  Google Scholar 

  6. Murashko, K., Pyrhönen, J., Laurila, L.: Optimization of the passive thermal control system of a lithium-ion battery with heat pipes embedded in an aluminum plate. In: 2013 15th European Conference on Power Electronics and Applications, EPE 2013, pp. 1–10 (2013)

    Google Scholar 

  7. Tran, T.-H., Harmand, S., Desmet, B., Filangi, S.: Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery. Appl. Therm. Eng. 63, 551–558 (2014). https://doi.org/10.1016/j.applthermaleng.2013.11.048

    Article  Google Scholar 

  8. Zhao, R., Gu, J., Liu, J.: An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. J. Power Sources 273, 1089–1097 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.007

    Article  Google Scholar 

  9. Chan, C.W., Siqueiros, E., Ling-Chin, J., et al.: Heat utilisation technologies: a critical review of heat pipes. Renew. Sustain. Energy Rev. 50, 615–627 (2015). https://doi.org/10.1016/j.rser.2015.05.028

    Article  Google Scholar 

  10. Nookaraju, B.C., Rao, P.S.V.K., Nagasarada, S.: Experimental and numerical analysis of thermal performance in heat pipes. Proc. Eng. 127, 800–808 (2015). https://doi.org/10.1016/j.proeng.2015.11.415

    Article  Google Scholar 

  11. Khalili, M., Shafii, M.B.: Experimental and numerical investigation of the thermal performance of a novel sintered-wick heat pipe. Appl. Therm. Eng. 94, 59–75 (2016). https://doi.org/10.1016/j.applthermaleng.2015.10.120

    Article  Google Scholar 

  12. Chnookaraju, B., Kurmarao, P.S.V., Sarada, S.N.: Thermal analysis of gravity effected sintered wick heat pipe. Mater. Today Proc. 2, 2179–2187 (2015). https://doi.org/10.1016/j.matpr.2015.07.230

    Article  Google Scholar 

  13. Jouhara, H., Fadhl, B., Wrobel, L.C.: Three-dimensional CFD simulation of geyser boiling in a two-phase closed thermosyphon. Int. J. Hydrogen Energy 44, 1–14 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.038

    Article  Google Scholar 

  14. Sukchana, T., Pratinthong, N.: A two-phase closed thermosyphon with an adiabatic section using a flexible hose and R-134a filling. Exp. Therm. Fluid Sci. 77, 317–326 (2016). https://doi.org/10.1016/j.expthermflusci.2016.04.027

    Article  Google Scholar 

  15. Fadhl, B., Wrobel, L.C., Jouhara, H.: CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a. Appl. Therm. Eng. 78, 482–490 (2015). https://doi.org/10.1016/j.applthermaleng.2014.12.062

    Article  Google Scholar 

  16. Mroue, H., Ramos, J.B., Wrobel, L.C., Jouhara, H.: Experimental and numerical investigation of an air-to-water heat pipe-based heat exchanger. Appl. Therm. Eng. 78, 339–350 (2015). https://doi.org/10.1016/j.applthermaleng.2015.01.005

    Article  Google Scholar 

  17. Esarte, J., Bernardini, A., Blanco, J.M., Sancibrian, R.: Optimizing the design for a two-phase cooling loop heat pipe: part A: numerical model, validation and application to a case study. Appl. Therm. Eng. 99, 892–904 (2016). https://doi.org/10.1016/j.applthermaleng.2016.01.150

    Article  Google Scholar 

  18. Nishikawara, M., Nagano, H.: Parametric experiments on a miniature loop heat pipe with PTFE wicks. Int. J. Therm. Sci. 85, 29–39 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.05.016

    Article  Google Scholar 

  19. Wu, S.C., Wang, D., Chen, Y.M.: Investigating the effect of double-layer wick thickness ratio on heat transfer performance of loop heat pipe. Int. J. Therm. Sci. 86, 292–298 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.07.014

    Article  Google Scholar 

  20. Pouryoussefi, S.M., Zhang, Y.: Numerical investigation of chaotic flow in a 2D closed-loop pulsating heat pipe. Appl. Therm. Eng. 98, 617–627 (2016). https://doi.org/10.1016/j.applthermaleng.2015.12.097

    Article  Google Scholar 

  21. Mameli, M., Manno, V., Filippeschi, S., Marengo, M.: Thermal instability of a closed loop pulsating heat pipe: combined effect of orientation and filling ratio. Exp. Therm. Fluid Sci. 59, 222–229 (2014). https://doi.org/10.1016/j.expthermflusci.2014.04.009

    Article  Google Scholar 

  22. Naik, R., Varadarajan, V., Pundarika, G., Narasimha, K.R.: Experimental investigation and performance evaluation of a closed loop pulsating heat pipe. J. Appl. Fluid Mech. 6, 267–275 (2013). https://doi.org/10.4028/www.scientific.net/AMM.592-594.1554

    Article  Google Scholar 

  23. Cheng, P.J., Lin, D.T.W., Liu, W.M., et al.: The study of an innovative heat removal model of the aluminum-acetone flat plate heat pipe on high power leds. Trans. Can Soc. Mech. Eng. 39, 739–748 (2015)

    Article  Google Scholar 

  24. Oro, M.V., Bazzo, E.: Flat heat pipes for potential application in fuel cell cooling. Appl. Therm. Eng. 90, 848–857 (2015). https://doi.org/10.1016/j.applthermaleng.2015.07.055

    Article  Google Scholar 

  25. Chen, J.S., Chou, J.H.: Cooling performance of flat plate heat pipes with different liquid filling ratios. Int. J. Heat Mass Transf. 77, 874–882 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.029

    Article  Google Scholar 

  26. Solomon, A.B., Sekar, M., Yang, S.H.: Analytical expression for thermal conductivity of heat pipe. Appl. Therm. Eng. 100, 462–467 (2016). https://doi.org/10.1063/1.3386464

    Article  Google Scholar 

  27. Ferrandi, C., Iorizzo, F., Mameli, M., et al.: Lumped parameter model of sintered heat pipe: Transient numerical analysis and validation. Appl. Therm. Eng. 50, 1280–1290 (2013). https://doi.org/10.1016/j.applthermaleng.2012.07.022

    Article  Google Scholar 

  28. Kumar, V., Gangacharyulu, D., Tathgir, R.G.: Heat transfer studies of a heat pipe. Heat Transf. Eng. 28, 954–965 (2007). https://doi.org/10.1080/01457630701421810

    Article  Google Scholar 

  29. Faghri, A., Harley, C.: Transient lumped heat pipe analyses. Heat Recover. Syst. CHP 14, 351–363 (1994). https://doi.org/10.1016/0890-4332(94)90039-6

    Article  Google Scholar 

  30. Liu, F., Lan, F., Chen, J.: Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling. J. Power Sources 321, 57–70 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.108

    Article  Google Scholar 

  31. Mahdavi, M., Qiu, S.: Mathematical modeling and analysis of steady state performance of a heat pipe network. Appl. Therm. Eng. 91, 556–573 (2015). https://doi.org/10.1016/j.applthermaleng.2015.08.017

    Article  Google Scholar 

  32. Zhang, P., Wang, B., Shi, W., et al.: Modeling and performance analysis of a two-phase thermosyphon loop with partially/fully liquid-filled downcomer. Int. J. Refrig. 58, 172–185 (2015). https://doi.org/10.1016/j.ijrefrig.2015.06.014

    Article  Google Scholar 

  33. Tsai, T.-E., Wu, G.-W., Chang, C.-C., et al.: Dynamic test method for determining the thermal performances of heat pipes. Int. J. Heat Mass Transf. 53, 4567–4578 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.037

    Article  MATH  Google Scholar 

  34. Mistry, P.R., Thakkar, F.M., De, S., DasGupta, S.: Experimental validation of a two-dimensional model of the transient and steady-state characteristics of a wicked heat pipe. Exp. Heat Transf. 23, 333–348 (2010). https://doi.org/10.1080/08916150903564804

    Article  Google Scholar 

  35. Ismail, K.A.R., Zanardit, M.A.: A steady-state model for heat pipes of cross-sections. Appl. Therm. Eng. 16,753–767 (1996)

    Google Scholar 

  36. Tournier, J.-M., El-Genk, M.S.: A heat pipe transient analysis model. Int. J. Heat Mass Transf. 37, 753–762 (1994). https://doi.org/10.1016/0017-9310(94)90113-9

    Article  MATH  Google Scholar 

  37. Elnaggar, M.H.A., Abdullah, M.Z., Munusamy, S.R.R.: Experimental and numerical studies of finned L-shape heat pipe for notebook-PC cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 978–988 (2013). https://doi.org/10.1109/TCPMT.2013.2245944

    Article  Google Scholar 

  38. Annamalai, S., Ramalingam, V.: Experimental investigation and CFD analysis of a air cooled condenser heat pipe. Therm. Sci. 15, 759–772 (2011). https://doi.org/10.2298/TSCI100331023A

    Article  Google Scholar 

  39. Huminic, G., Huminic, A.: CFD study of the heat pipes with water-nanoparticles mixture. In: EASC 4th European Automotive Simulation Conference (2009)

    Google Scholar 

  40. Lin, Z., Wang, S., Shirakashi, R., Winston Zhang, L.: Simulation of a miniature oscillating heat pipe in bottom heating mode using CFD with unsteady modeling. Int. J. Heat Mass Transf. 57, 642–656 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.007

    Article  Google Scholar 

  41. Alizadehdakhel, A., Rahimi, M., Alsairafi, A.A.: CFD modeling of flow and heat transfer in a thermosyphon. Int. Commun. Heat Mass Transf. 37, 312–318 (2010). https://doi.org/10.1016/j.icheatmasstransfer.2009.09.002

    Article  Google Scholar 

  42. Legierski, J., Wiecek, B., de Mey, G.: Measurements and simulations of transient characteristics of heat pipes. Microelectron. Reliab. 46, 109–115 (2006). https://doi.org/10.1016/j.microrel.2005.06.003

    Article  Google Scholar 

  43. Idrus, F., Mohamad, N., Zailani, R., et al.: Thermal performance of a cylindrical heat pipe for different heat inputs and inclination angles. Appl. Mech. Mater. 661, 148–153 (2014). https://doi.org/10.4028/www.scientific.net/AMM.661.148

    Article  Google Scholar 

  44. Peterson, G.P.: An Introduction to Heat Pipes; Modelling, Testing, and Applications. Wiley, New York (1994)

    Google Scholar 

  45. Chi, S.: Heat Pipe Theory and Practice: A Sourcebook (Series in Thermal and Fluids Engineering). McGraw-Hill Inc., USA (1976)

    Google Scholar 

  46. El-Nasr, A.A., El-Haggar, S.M.: Effective thermal conductivity of heat pipes. Heat Mass Transf. 32, 97–101 (1996). https://doi.org/10.1007/s002310050097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiza Mohamed Nasir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nasir, F.M., Abdullah, M.Z., Idrus, F. (2019). Thermal Analysis of a Cylindrical Sintered Wick Heat Pipe. In: Ismail, A., Abu Bakar, M., Öchsner, A. (eds) Advanced Engineering for Processes and Technologies. Advanced Structured Materials, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-030-05621-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05621-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05620-9

  • Online ISBN: 978-3-030-05621-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics