Skip to main content

Effect of Carbon-Based Nanomaterials on Rhizosphere and Plant Functioning

  • Chapter
  • First Online:
Nanomaterials and Plant Potential

Abstract

Carbon and carbon-based nanomaterials are getting much attention due to their diverse applications. In plant system, they penetrate into roots and move further to shoot. Their entrance in plant system depends on their size, concentration, solubility, plant species, and properties of growth medium (soil, etc.). Penetration of carbon nanotubes into the plant system triggers changes in metabolic functions of the plant leading to increase in its biomass, fruit production, and/or grain yield. In several cases, carbon-based nanomaterials have increased the rate of seed germination and plant growth. Studies have also shown that carbon nanotubes have stimulated plant photosynthetic efficiency, gene and protein expression as well as production of a variety of metabolites including compounds of medicinal importance. Multi-walled carbon nanotubes and graphene-based nanomaterials have shown promotive effect under stress condition, e.g., they mitigated the negative impacts of salinity and drought on various plant species. Multi-walled carbon nanotube-encapsulated fungicides were also been used as antifungal agents. Carbon-based nanomaterials also influence soil microorganisms, which has a direct bearing on the interaction between rhizosphere and root system. Both beneficial and adverse effects of these nanomaterials on soil microbial communities are on record. The objective of this chapter is to assess the influence of carbon-based nanomaterials on rhizospheric microbial community, plant growth and development, and plant protection from various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Over expression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    Article  CAS  PubMed  Google Scholar 

  • Baptista FR, Belhout SA, Giordani S, Quinn SJ (2015) Recent developments in carbon nano material sensors. Chem Soc Rev 44:4433–4453

    Article  CAS  PubMed  Google Scholar 

  • Basch E, Gabardi S, Ulbricht C (2003) Bittermelon (Momordica charantia): are view of efficacy and safety. Am J Health Syst Pharm 60:356–359

    Article  PubMed  Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 97:787–792

    Article  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F (2012) Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci 262:120–124

    Article  CAS  Google Scholar 

  • Bennett SW, Adeleye A, Ji Z, Keller AA (2013) Stability, metal leaching, photoactivity and toxicity in fresh water systems of commercial single wall carbon nano tubes. Water Res 47:4074–4085

    Article  CAS  PubMed  Google Scholar 

  • Biris AS, Khodakovskaya MV (2012) Method of using carbon nanotubes to affect seed germination and plant growth. Patent US0233725

    Google Scholar 

  • Boghossian AA (2013) Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv Energy Mater 3:881–893

    Article  CAS  Google Scholar 

  • Bucher M, Brunner S, Zimmermann P, Zardi GI, Amrhein N, Willmitzer L, Riesmeier JW (2002) The expression of an extensin-like protein correlates with cellular tip growth in tomato. Plant Physiol 128:911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burlaka OM, Pirko YV, Yemets AI, Blume YB (2015) Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol Genet 49:349–357

    Article  Google Scholar 

  • Calkins JO, Umasankar Y, O’Neill H, Ramasamy RP (2013) High photo-electrochemical activity of thylakoid–carbon nanotube composites for photosynthetic energy conversion. Energy Environ Sci 6:1891–1900

    Article  CAS  Google Scholar 

  • Cañas JE, Long MQ, Nations S, Vadan R, Dai L, Luo MX (2008a) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Article  PubMed  Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008b) Effects of functionalized and non functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Article  PubMed  Google Scholar 

  • Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nano materials multifunctional materials for biomedical engineering. ACS Nano 7:2891–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Wang H, Yang B, He F, Han X, Song Z (2015) Responses of soil ammonia-oxidizing microorganisms to repeated exposure of single-walled and multi-walled carbon nanotubes. Sci Total Environ 505:649–657

    Article  CAS  PubMed  Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials (Basel) 5:851–873

    Article  CAS  Google Scholar 

  • Chung H, Son Y, Yoon TK, Kim S, Kim W (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74:569–575

    Article  CAS  PubMed  Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173-174:19–27

    Article  CAS  Google Scholar 

  • Embiale A, Hussein M, Husen A, Sahile S, Mohammed K (2016) Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agron 15:45–57

    Article  CAS  Google Scholar 

  • Fan X, Xu J, Lavoie M, Peijnenburg WJGM, Zhu Y, Lu T, Fu Z, Zhu T, Qian H (2018) Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana. Environ Pollut 233:633–641

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636–2642

    Article  CAS  PubMed  Google Scholar 

  • Fathi Z, Nejad RAK, Zadeh HM, Satari TN (2017) Investigating of a wide range of concentrations of multi-walled carbon nanotubes on germination and growth of castor seeds (Ricinus communis L.). J Plant Pro Res 57:228–236

    Article  Google Scholar 

  • Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822

    Article  CAS  PubMed  Google Scholar 

  • Getnet Z, Husen A, Fetene M, Yemata G (2015) Growth, water status, physiological, biochemical and yield response of stay green sorghum {Sorghum bicolor (L.) Moench} varieties-a field trial under drought-prone area in Amhara regional state, Ethiopia. J Agron 14:188–202

    Article  CAS  Google Scholar 

  • Ghorbanpour M, Farahani AHK, Hadian J (2018) Potential toxicity of nano-graphene oxide on callus cell of Plantago major L. under polyethylene glycol-induced dehydration. Ecotoxicol Environ Saf 148:910–922

    Article  CAS  Google Scholar 

  • Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A (2011) Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. J Hazard Mater 197:327–336

    Article  CAS  PubMed  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  CAS  PubMed  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de- Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Article  PubMed  Google Scholar 

  • Haghighi M, Teixeira da Silva JA (2014) The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J Crop Sci Biotechnol 17:201–208

    Article  Google Scholar 

  • Ham MH (2010) Photo electrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat Chem 2:929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasaneen MNAG, Abdel-aziz HMM, Omer AM (2016) Effect of foliar application of engineered nanomaterials: carbon nanotubes NPK and chitosan nanoparticles NPK fertilizer on the growth of French bean plant. Bioch Biot Res 4:68–76

    Google Scholar 

  • He Y, Hu R, Zhong Y, Zhao X, Chen Q, Zhu H (2017) Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res 11:1928. https://doi.org/10.1007/s12274-017-1810-1

    Article  CAS  Google Scholar 

  • Heller DA (2009) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotech 4:114–120

    Article  CAS  Google Scholar 

  • Hu X, Zhou Q (2014) Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Sci Rep 4:3782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  PubMed  Google Scholar 

  • Hui L, Piao J, Auletta J, Hu K, Zhu Y, Meyer T, Liu H, Yang L (2014) Availability of the basal planes of graphene oxide determines whether it is antibacterial. ACS Appl Mater Interfaces 6:13183–13190

    Article  CAS  PubMed  Google Scholar 

  • Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends and perspectives on the special issue. Carbon 44:1028–1033

    Article  CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014a) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16

    Article  CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014b) Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett 9:229

    Article  CAS  Google Scholar 

  • Husen A, Iqbal M, Aref MI (2014) Growth, water status and leaf characteristics of Brassica carinata under drought stress and rehydration conditions. Braz J Bot 37:217–227

    Article  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2016) IAA-induced alteration in growth and photosynthesis of pea (Pisum sativum L.) plants grown under salt stress. J Environ Biol 37:421–429

    CAS  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2017) Plant growth and foliar characteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. J Environ Biol 38:179–186

    Article  Google Scholar 

  • Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agric Food Secur 7:44

    Article  Google Scholar 

  • Husen A, Iqbal M, Khanum N, Aref IM, Sohrab SS, Meshresa G (2019) Modulation of salt-stress tolerance of niger (Guizotia abyssinica), an oilseed plant, by application of salicylic acid. J Environ Biol 40:40:94–104

    Google Scholar 

  • Jackson P, Jacobsen NR, Baun A, Birkedal R, Kuhnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang Y, Hua Z, Zhao Y, Liu Q, Wang F, Zhang Q (2012) The effect of carbon nanotubes on rice seed germination and root growth. In: Proceedings of the 2012 international conference on applied biotechnology. Springer, Berlin, pp 1207–1212

    Google Scholar 

  • Jin L, Son Y, Yoon TK, Kang YJ, Kim W, Chung H (2013) High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass. Ecotoxicol Environ Saf 88:9–15

    Article  CAS  PubMed  Google Scholar 

  • Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27:1895–1903

    Article  CAS  PubMed  Google Scholar 

  • Joshi A, Kaur S, Singh P, Dharamvir K, Nayyar H, Verma G (2018a) Tracking multi-walled carbon nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian (human) cell viability. Appl Nanosci 8:1399–1414

    Article  CAS  Google Scholar 

  • Joshi A, Kaur S, Dharamvir K, Nayyar H, Verma G (2018b) Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J Sci Food Agri 98:8

    Article  CAS  Google Scholar 

  • Kaldenholff R, Fischer M (2006) Aquaporins in plants. Acta Physiol 187:169–176

    Article  CAS  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Mauter MS, Elimelech M (2008) Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 42:7528–7534

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Kannan N (2013) Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR. J Nanosci Nanotechnol 13:678–685

    Article  CAS  PubMed  Google Scholar 

  • Kerfahi D, Tripathi BM, Singh D, Kim H, Lee S, Lee J, Adams JM (2015) Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition. PLoS One 10:1230–1242

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya M, de Silva K, Nedosekin D, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle- plant interactions. Proc Natl Acad Sci U S A 108:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya M, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kim JH (2009) The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nat Chem 1:473–481

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Kole P, Randunu KM, ChoudharyP PR, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Singh A, Panigrahy A, Sahoo PK, Panigrahi KCS (2018) Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep 37:901–912

    Article  CAS  PubMed  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973

    Article  CAS  PubMed  Google Scholar 

  • Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: up take and biological effects. Carbon 81:607–619

    Article  CAS  Google Scholar 

  • Liang T, Yin Q, Zhang Y, Wang B, Guo W, Wang J, Xie J (2013) Effects of carbon nanoparticles application on the growth, physiological characteristics and nutrient accumulation in tobacco plants. J Food Agric Environ 11:954–958

    Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles, inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Fugetsu B, Su YB, Watari F (2009) Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 170:578–583

    Article  CAS  PubMed  Google Scholar 

  • Liu HY, Yu X, Cui DY, Sun MH, Sun WN, Tang ZC, Kwak SS, Su WA (2007) The role of water channel proteins and nitric oxide signaling in rice seed germination. Cell Res 17:638–649

    Google Scholar 

  • Liu SB, Wei L, Hao L, Fang N, Chang MW, Xu R, Yang Y, Chen Y (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902

    Google Scholar 

  • Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wei H, Li Z, Li S, Yan H, He Y, Tian Z (2015) Effects of graphene on germination and seedling morphology in rice. J Nanosci Nanotechnol 15:2695–2701

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Zhu X, Chen B (2017) A new insight of graphene oxide-Fe(III) complex photochemical behaviors under visible light irritation. Sci Rep 7:40711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJJ (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543

    Article  CAS  PubMed  Google Scholar 

  • Mangadlao JD, Santos CM, Felipe MJL, De Leon ACC, Rodrigues DF, Advincula RC (2015) On the antibacterial mechanism of graphene oxide (GO) Langmuir-Blodgett films. Chem Commun 51:2886–2889

    Article  CAS  Google Scholar 

  • Martínez-Ballesta MC, Zapata L, Chalbi N, Carvajal M (2016) Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotechnology 14:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maurel C (2007) Plant Aquaporins: novel functions and regulation properties. FEBS Lett 581:2227–2236

    Article  CAS  PubMed  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  PubMed  Google Scholar 

  • Merouropoulos G, Bernett DC, Shitsat AH (1999) The Arabidopsis Extensin gene is developmentally regulated, is induced by wounding, methyl jasmonate, abscisic and salicylic acid and codes for a protein with unusual motifs. Planta 208:212–219

    Article  Google Scholar 

  • Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9:3514–3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528

    Article  CAS  Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12:2212–2220

    Article  CAS  PubMed  Google Scholar 

  • Ng TB, Chan WY, Yeung HW (1992) Proteins with abortifacient, ribosome inactivating, immune modulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants. Gen Pharmacol 23:575–590

    Article  CAS  Google Scholar 

  • Perez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  CAS  PubMed  Google Scholar 

  • Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol 33:155–169

    Google Scholar 

  • Raman A, Lau C (1996) Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine 2:349–362

    Article  CAS  PubMed  Google Scholar 

  • Rangaraj S, Gopalu K, Muthusamy P, Rathinam Y, Venkatachalam R, Narayanasamy K (2014) Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.). RSC Adv 4:8461–8465

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues DF, Jaisi DP, Elimelech M (2013) Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol 47:625–633

    Article  CAS  PubMed  Google Scholar 

  • Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion. New Phytol 181:651–661

    Article  CAS  PubMed  Google Scholar 

  • Salva I, Jamet E (2001) Expression of the tobacco Ext 1.4 extensin gene upon mechanical constraint and localization of regulatory regions. Plant Biol 3:32–41

    Article  CAS  Google Scholar 

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nano composite for plant disease treatment. J Agric Food Chem 62:4833–4838

    Article  CAS  PubMed  Google Scholar 

  • Saxena M, Maity S, Sarkar S (2014) Carbon nano particles in ‘biochar’ boost wheat (Triticum aestivum) plant growth. RSC Adv 4:3994–3998

    Google Scholar 

  • Schmitz-Linneweber C (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45:307–315

    Article  CAS  PubMed  Google Scholar 

  • Schnittger A, Schobinger U, Stierhof YD, Hulskamp M (2002) Ectopic B-type cyclin expression induces mitotic cycles in endo reduplicating Arabidopsis Trichomes. Curr Biol 12:415–420

    Article  CAS  PubMed  Google Scholar 

  • Sharon M, Sharon M (2010) Carbon Nano forms and applications. McGraw Hill Professional, New York

    Google Scholar 

  • Shen C, Zhang Q, Li J, Bi F, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Cañas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197

    Article  CAS  PubMed  Google Scholar 

  • Simmons TJ, Lee SH, Park TJ, Hashim DP, Ajayan PM, Linhardt RJ (2009) Antiseptic single wall carbon nanotube bandages. Carbon 47:1561–1564

    Article  CAS  Google Scholar 

  • Sonkar SK, Roy M, Babara DG, Sarkar S (2012) Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale 4:7670–7675

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Rao DP (2014) Enhancement of seed germination and plant growth of wheat, maize, penut and garlic using multiwalled carbon nanotubes. Eur Chem Bull 3:502–504

    CAS  Google Scholar 

  • Srivastava V, Gusain D, Sharma YC (2015) Critical review on the toxicity of some widely used engineered nanoparticles. Ind Eng Chem Res 54:6209–6233

    Google Scholar 

  • Shan J, Ji R, Yu Y, Xie Z, Yan X (2015) Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil. Sci Rep 5:16000

    Google Scholar 

  • Tan X, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Tire C, de Rycke R, de Loose M, Inze D, Van M, Englr G (1994) Extensin gene expression is induced by mechanical stimuli leading to local cell wall strengthening in Nicotiana plumbaginifolia. Planta 195:175–181

    Article  CAS  PubMed  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Cendejas LM, Villegas J, Carreto Montoya L, García SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4:577–591

    Article  CAS  Google Scholar 

  • Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Bischoff M, Nies LF, Myer P, Applegate B, Turco RF (2012) Response of soil microorganisms to as-produced and functionalized single-wall carbon nanotubes (SWNTs). Environ Sci Technol 46:13471–13479

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Bischoff M, Nies LF, Carroll NJ, Applegate B, Turco RF (2016) Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent cointroduction effects. Sci Rep 6:28069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torney F, Trewyn GB, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295

    Article  CAS  PubMed  Google Scholar 

  • Torre-Roche RDL, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547

    Article  CAS  Google Scholar 

  • Tripathi S, Sarkar S (2015) Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci 5:609–616

    Article  CAS  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359:707–709

    Article  CAS  PubMed  Google Scholar 

  • Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Wang BC, Wang HW, Chang JC, Tso HC, Chou YM (2001) More spherical large fullerenes and multi-layer fullerene cages. J Mol Struct Theochem 540:171–176

    Article  CAS  Google Scholar 

  • Wang XP, Han HY, Liu XQ, Gu XX, Chen K, Lu DL (2012) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:10

    Google Scholar 

  • Wang X, Liu X, Chen J, Han H, Yuan Z (2014) Evaluation and mechanism of antifungal effects of carbon nano materials in controlling plant fungal pathogen. Carbon 68:798–806

    Article  CAS  Google Scholar 

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294

    Article  CAS  PubMed  Google Scholar 

  • Wong MH, Giraldo JP, Kwak SY, Koman VB, Sinclair R, Lew TT, Bisker G, Liu P, Strano MS (2017) Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat Mater 16:264–272

    Article  CAS  PubMed  Google Scholar 

  • Yan SH, Zhao L, Li H, Zhang Q, Tan JJ, Huang M (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Su M, Liu C, Chen L, Huang H, Wu X, Liu X, Yang F, Gao F, Hong F (2007) Nanoparticles in medicine: therapeutic applications and developments. Trace Elem Res 109:68–73

    Google Scholar 

  • Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Slow-release fertilizer encapsulated by graphene oxide films. J Chem Eng 255:107–113

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Chen J, Li Y, Zhang M, Gao B, Chen J, Li Y (2015) Effects of graphene on seed germination and seedling growth. J Nanopart Res 17:78–84

    Article  CAS  Google Scholar 

  • Zhao Q, Ma C, White JC, Dhankher OP, Zhang X, Zhang S, Xing B (2017) Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants. Carbon 114:661–670

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wagay, J.A., Singh, S., Raffi, M., Rahman, Q.I., Husen, A. (2019). Effect of Carbon-Based Nanomaterials on Rhizosphere and Plant Functioning. In: Husen, A., Iqbal, M. (eds) Nanomaterials and Plant Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1_22

Download citation

Publish with us

Policies and ethics