Skip to main content

Advances in Biomarker Studies in Autism Spectrum Disorders

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1118))

Abstract

Autism spectrum disorder (ASD) is a neurological and developmental condition that begins early in childhood and lasts throughout life. The epidemiology of ASD is continuously increasing all over the world with huge social and economical burdens. As the etiology of autism is not completely understood, there is still no medication available for the treatment of this disorder. However, some behavioral interventions are available to improve the core and associated symptoms of autism, particularly when initiated at an early stage. Thus, there is an increasing demand for finding biomarkers for ASD. Although diagnostic biomarkers have not yet been established, research efforts have been carried out in neuroimaging and biological analyses including genomics and gene testing, proteomics, metabolomics, transcriptomics, and studies of the immune system, inflammation, and microRNAs. Here, we will review the current progress in these fields and focus on new methods, developments, research strategies, and studies of blood-based biomarkers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Washington, DC. ISBN-10: 0890425558

    Google Scholar 

  2. Lai M-C, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383:896–910

    Article  PubMed  Google Scholar 

  3. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z et al (2018) Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ 67:1–23

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baron-Cohen S, Scott FJ, Allison C, Williams J, Bolton P, Matthews FE et al (2009) Prevalence of autism-spectrum conditions: UK school-based population study. Br J Psychiatry 194:500–509

    Article  PubMed  Google Scholar 

  5. Saemundsen E, Magnússon P, Georgsdóttir I, Egilsson E, Rafnsson V (2013) Prevalence of autism spectrum disorders in an Icelandic birth cohort. BMJ Open3(6). https://doi.org/10.1136/bmjopen-2013-002748

    Article  PubMed  PubMed Central  Google Scholar 

  6. Russell G, Rodgers LR, Ukoumunne OC, Ford T (2014) Prevalence of parent-reported ASD and ADHD in the UK: findings from the Millennium Cohort Study. J Autism Dev Disord 44:31–40

    Article  PubMed  Google Scholar 

  7. Baxter AJ, Brugha TS, Erskine HE, Scheurer RW, Vos T, Scott JG (2015) The epidemiology and global burden of autism spectrum disorders. Psychol Med 45:601–613

    Article  CAS  PubMed  Google Scholar 

  8. Jin Z, Yang Y, Liu S, Huang H, Jin X (2018) Prevalence of DSM-5 autism spectrum disorder among school-based children aged 3-12 years in Shanghai, China. J Autism Dev Disord 48:2434–2443

    Article  PubMed  Google Scholar 

  9. Fombonne E (2009) Epidemiology of pervasive developmental disorders. Pediatr Res 65:591–598

    Article  PubMed  Google Scholar 

  10. Barger BD, Campbell JM, McDonough JD (2013) Prevalence and onset of regression within autism spectrum disorders: a meta-analytic review. J Autism Dev Disord 43:817–828

    Article  PubMed  Google Scholar 

  11. Ozonoff S, Gangi D, Hanzel EP, Hill A, Hill MM, Miller M et al (2018) Onset patterns in autism: variation across informants, methods, and timing. Autism Res 11:788–797

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rossignol DA, Frye RE (2012) A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 17:389–401

    Article  CAS  PubMed  Google Scholar 

  13. Frustaci A, Neri M, Cesario A, Adams JB, Domenici E, Dalla Bernardina B et al (2012) Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med 52:2128–2141

    Article  CAS  PubMed  Google Scholar 

  14. Kaur K, Chauhan V, Gu F, Chauhan A (2014) Bisphenol A induces oxidative stress and mitochondrial dysfunction in lymphoblasts from children with autism and unaffected siblings. Free Radic Biol Med 76:25–33

    Article  CAS  PubMed  Google Scholar 

  15. Zachor DA (2012) Autism spectrum disorders—a syndrome on the rise: risk factors and advances in early detection and intervention. Harefuah 151:162–164 189

    PubMed  Google Scholar 

  16. Dawson G (2008) Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Dev Psychopathol 20:775–803

    Article  PubMed  Google Scholar 

  17. Brett D, Warnell F, McConachie H, Parr JR (2016) Factors affecting age at ASD diagnosis in UK: no evidence that diagnosis age has decreased between 2004 and 2014. J Autism Dev Disord 46:1974–1984

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ruggeri B, Sarkans U, Schumann G, Persico AM (2014) Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology 231:1201–1216

    Article  CAS  PubMed  Google Scholar 

  19. Heunis T, Aldrich C, Peters JM, Jeste SS, Sahin M, Scheffer C et al (2018) Recurrence quantification analysis of resting state EEG signals in autism spectrum disorder—a systematic methodological exploration of technical and demographic confounders in the search for biomarkers. BMC Med 16:101. https://doi.org/10.1186/s12916-018-1086-7

  20. Jones W, Klin A (2013) Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature 504:427–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Constantino JN, Kennon-McGill S, Weichselbaum C, Marrus N, Haider A, Glowinski AL et al (2017) Infant viewing of social scenes is under genetic control and is atypical in autism. Nature 547:340–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nyström P, Gliga T, Nilsson Jobs E, Gredebäck G, Charman T, Johnson MH et al (2018) Enhanced pupillary light reflex in infancy is associated with autism diagnosis in toddlerhood. Nat Commun 9(1):1678. https://doi.org/10.1038/s41467-018-03985-4

  23. Bhaumik R, Pradhan A, Das S, Bhaumik DK (2018) Predicting autism spectrum disorder using domain-adaptive cross-site evaluation. Neuroinformatics 16:197–205

    Article  PubMed  Google Scholar 

  24. Dickie EW, Ameis SH, Shahab S, Calarco N, Smith DE, Miranda D et al (2018) Personalized intrinsic network topography mapping and functional connectivity deficits in Autism Spectrum disorder. Biol Psychiatry 84:278–286

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu T, Liu X, Yi L, Zhu C, Markey PS, Pelowski M (2017) Assessing autism at its social and developmental roots: a review of Autism Spectrum Disorder studies using functional near-infrared spectroscopy. NeuroImage 185:955–967

    Article  PubMed  Google Scholar 

  26. Onitsuka T, Shenton ME, Salisbury DF, Dickey CC, Kasai K, Toner SK et al (2004) Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. Am J Psychiatry 161:1603–1611

    Article  PubMed  PubMed Central  Google Scholar 

  27. Emerson RW, Adams C, Nishino T, Hazlett HC, Wolff JJ, Zwaigenbaum L et al (2017) Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci Transl Med 9(393). https://doi.org/10.1126/scitranslmed.aag2882

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ et al (2017) Early brain development in infants at high risk for autism spectrum disorder. Nature 542:348–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ronald A, Hoekstra RA (2011) Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet 156:255–274

    Article  Google Scholar 

  30. Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A (2014) The familial risk of autism. JAMA 311:1770–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB et al (2014) Most genetic risk for autism resides with common variation. Nat Genet 46:881–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH (2016) Advancing the understanding of autism disease mechanisms through genetics. Nat Med 22:345–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI Jr, Hallmayer JF (2017) Autism genetics: opportunities and challenges for clinical translation. Nat Rev Genet 18:362–376

    Article  CAS  PubMed  Google Scholar 

  34. Geschwind DH, State MW (2015) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol 14:1109–1120

    Article  PubMed  PubMed Central  Google Scholar 

  35. Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA et al (2013) SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol Autism 4:36. doi: 10.1186/2040-2392-4-36

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D (2011) Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70:898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D et al (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515:216–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takata A, Ionita-Laza I, Gogos JA, Xu B, Karayiorgou M (2016) De novo synonymous mutations in regulatory elements contribute to the genetic etiology of autism and schizophrenia. Neuron 89:940–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kosmicki JA, Samocha KE, Howrigan DP, Sanders SJ, Slowikowski K, Lek M et al (2017) Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat Genet 49:504–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilfert AB, Sulovari A, Turner TN, Coe BP, Eichler EE (2017) Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications. Genome Med 9(1):101. https://doi.org/10.1186/s13073-017-0498-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takata A, Miyake N, Tsurusaki Y, Fukai R, Miyatake S, Koshimizu E et al (2018) Integrative analyses of de novo mutations provide deeper biological insights into autism spectrum disorder. Cell Rep 22:734–747

    Article  CAS  PubMed  Google Scholar 

  43. Werling DM, Brand H, An J-Y, Stone MR2, Zhu L, Glessner JT et al (2018) An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet 50:727–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Turner TN, Hormozdiari F, Duyzend MH, McClymont SA, Hook PW, Iossifov I et al (2016) Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am J Hum Genet 98:58–74

    Article  CAS  PubMed  Google Scholar 

  45. Doan RN, Bae B-I, Cubelos B, Chang C, Hossain AA, Al-Saad S et al (2016) Mutations in human accelerated regions disrupt cognition and social behavior. Cell 167:341–354.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brandler WM, Antaki D, Gujral M, Kleiber ML, Whitney J, Maile MS et al (2018) Paternally inherited cis-regulatory structural variants are associated with autism. Science 360:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qin L, Ma K, Wang Z-J, Hu Z, Matas E, Wei J et al (2018) Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci 21:564–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schaefer GB, Mendelsohn NJ, Professional Practice and Guidelines Committee (2013) Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med 15:399–407

    Article  CAS  PubMed  Google Scholar 

  49. Kalsner L, Twachtman-Bassett J, Tokarski K, Stanley C, Dumont-Mathieu T, Cotney J et al (2018) Genetic testing including targeted gene panel in a diverse clinical population of children with autism spectrum disorder: findings and implications. Mol Genet Genomic Med 6:171–185

    Article  CAS  PubMed  Google Scholar 

  50. Fernandez BA, Scherer SW (2017) Syndromic autism spectrum disorders: moving from a clinically defined to a molecularly defined approach. Dialogues Clin Neurosci 19:353–371

    PubMed  PubMed Central  Google Scholar 

  51. Jiang Y-H, Wang Y, Xiu X, Choy KW, Pursley AN, Cheung SW (2014) Genetic diagnosis of autism spectrum disorders: the opportunity and challenge in the genomics era. Crit Rev Clin Lab Sci 51:249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Won H, Mah W, Kim E (2013) Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci 6(19). https://doi.org/10.3389/fnmol.2013.00019

  53. Wang P, Mokhtari R, Pedrosa E, Kirschenbaum M, Bayrak C, Zheng D et al (2017) CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 8(11). https://doi.org/10.1186/s13229-017-0124-1

  54. Wilkinson B, Grepo N, Thompson BL, Kim J, Wang K, Evgrafov OV et al (2015) The autism-associated gene chromodomain helicase DNA-binding protein 8 (CHD8) regulates noncoding RNAs and autism-related genes. Transl Psychiatry 5:e568. https://doi.org/10.1038/tp.2015.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fiorentino M, Sapone A, Senger S, Camhi SS, Kadzielski SM, Buie TM et al (2016) Blood–brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism;7:49. https://doi.org/10.1186/s13229-016-0110-z

  56. De Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P et al (2010) Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 51:418–424

    Article  PubMed  Google Scholar 

  57. Esnafoglu E, Cırrık S, Ayyıldız SN, Erdil A, Ertürk EY, Daglı A et al (2017) Increased serum zonulin levels as an intestinal permeability marker in autistic subjects. J Pediatr 188:240–244

    Article  CAS  PubMed  Google Scholar 

  58. Hayashi-Takagi A, Vawter MP, Iwamoto K (2014) Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research. Biol Psychiatry 75:920–928

    Article  CAS  PubMed  Google Scholar 

  59. Graves PR, Haystead TAJ (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66:39–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smith LM, Kelleher NL, Consortium for Top Down Proteomics (2013) Proteoform: a single term describing protein complexity. Nat Methods 10:186–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587

    Article  CAS  PubMed  Google Scholar 

  62. Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR, Boja ES et al (2018) How many human proteoforms are there? Nat Chem Biol 14:206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Junaid MA, Kowal D, Barua M, Pullarkat PS, Sklower Brooks S et al (2004) Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor. Am J Med Genet A 131:11–17

    Article  PubMed  PubMed Central  Google Scholar 

  64. Broek JA, Guest PC, Rahmoune H, Bahn S (2014) Proteomic analysis of post mortem brain tissue from autism patients: evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins. Mol Autism 5:41. https://doi.org/10.1186/2040-2392-5-41

    Article  PubMed  PubMed Central  Google Scholar 

  65. Corbett BA, Kantor AB, Schulman H, Walker WL, Lit L, Ashwood P et al (2007) A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol Psychiatry 12:292–306

    Article  CAS  PubMed  Google Scholar 

  66. Taurines R, Dudley E, Conner AC, Grassl J, Jans T, Guderian F et al (2010) Serum protein profiling and proteomics in autistic spectrum disorder using magnetic bead-assisted mass spectrometry. Eur Arch Psychiatry Clin Neurosci 260:249–255

    Article  PubMed  Google Scholar 

  67. Ramsey JM, Guest PC, Broek JA, Glennon JC, Rommelse N, Franke B et al (2013) Identification of an age-dependent biomarker signature in children and adolescents with autism spectrum disorders. Mol Autism 4:27. https://doi.org/10.1186/2040-2392-4-27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Steeb H, Ramsey JM, Guest PC, Stocki P, Cooper JD, Rahmoune H et al (2014) Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome. Mol Autism 5:4. https://doi.org/10.1186/2040-2392-5-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ngounou Wetie AG, Wormwood K, Thome J, Dudley E, Taurines R, Gerlach M et al (2014) A pilot proteomic study of protein markers in autism spectrum disorder. Electrophoresis 35:2046–2054

    Article  CAS  PubMed  Google Scholar 

  70. Cortelazzo A, De Felice C, Guerranti R, Signorini C, Leoncini S, Zollo G et al (2016) Expression and oxidative modifications of plasma proteins in autism spectrum disorders: interplay between inflammatory response and lipid peroxidation. Proteomics Clin Appl 10:1103–1112

    Article  CAS  PubMed  Google Scholar 

  71. Feng C, Chen Y, Pan J, Yang A, Niu L, Min J et al (2017) Redox proteomic identification of carbonylated proteins in autism plasma: insight into oxidative stress and its related biomarkers in autism. Clin Proteomics 14:2. https://doi.org/10.1186/s12014-017-9138-0

  72. Shen L, Zhang K, Feng C, Chen Y, Li S, Iqbal J et al (2018) iTRAQ-based proteomic analysis reveals protein profile in plasma from children with autism. Proteomics Clin Appl 12(3):e1700085. https://doi.org/10.1002/prca.201700085

    Article  CAS  Google Scholar 

  73. Shen C, Zhao X, Ju W, Huo LR, Yan W, Zou JH et al (2011) A proteomic investigation of B lymphocytes in an autistic family: a pilot study of exposure to natural rubber latex (NRL) may lead to autism. J Mol Neurosci 43:443–452

    Article  CAS  PubMed  Google Scholar 

  74. Zerbo O, Yoshida C, Grether JK, Van de Water J, Ashwood P, Delorenze GN et al (2014) Neonatal cytokines and chemokines and risk of Autism Spectrum Disorder: the Early Markers for Autism (EMA) study: a case-control study. J Neuroinflammation 11:113. https://doi.org/10.1186/1742-2094-11-113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Krakowiak P, Goines PE, Tancredi DJ, Ashwood P, Hansen RL, Hertz-Picciotto I et al (2017) Neonatal cytokine profiles associated with autism spectrum disorder. Biol Psychiatry 81:442–451

    Article  CAS  PubMed  Google Scholar 

  76. Suganya V, Geetha A, Sujatha S (2015) Urine proteome analysis to evaluate protein biomarkers in children with autism. Clin Chim Acta 450:210–219

    Article  CAS  PubMed  Google Scholar 

  77. Yang L, Rudser K, Golnik A, Wey A, Higgins LA, Gourley GR (2016) Urine protein biomarker candidates for autism. J Proteomics Bioinform S14:004. https://doi.org/10.4172/jpb.S14-004

  78. Wetie AGN, Wormwood KL, Russell S, Ryan JP, Darie CC, Woods AG (2015) A pilot proteomic analysis of salivary biomarkers in autism spectrum disorder. Autism Res 8:338–350

    Article  Google Scholar 

  79. Wetie AGN, Wormwood KL, Charette L, Ryan JP, Woods AG, Darie CC (2015) Comparative two-dimensional polyacrylamide gel electrophoresis of the salivary proteome of children with autism spectrum disorder. J Cell Mol Med 19:2664–2678

    Article  CAS  Google Scholar 

  80. Wei H, Ma Y, Liu J, Ding C, Hu F, Yu L (2016) Proteomic analysis of cortical brain tissue from the BTBR mouse model of autism: evidence for changes in STOP and myelin-related proteins. Neuroscience 312:26–34

    Article  CAS  PubMed  Google Scholar 

  81. Wu L, Candille SI, Choi Y, Xie D, Jiang L, Li-Pook-Than J et al (2013) Variation and genetic control of protein abundance in humans. Nature 499:79–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J et al (2017) Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun 8:14357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J et al (2018) Genomic atlas of the human plasma proteome. Nature 558:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355

    Article  CAS  PubMed  Google Scholar 

  85. Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  CAS  PubMed  Google Scholar 

  86. Unwin RD, Pierce A, Watson RB, Sternberg DW, Whetton AD (2005) Quantitative proteomic analysis using isobaric protein tags enables rapid comparison of changes in transcript and protein levels in transformed cells. Mol Cell Proteomics 4:924–935

    Article  CAS  PubMed  Google Scholar 

  87. Skafidas E, Testa R, Zantomio D, Chana G, Everall IP, Pantelis C (2014) Predicting the diagnosis of autism spectrum disorder using gene pathway analysis. Mol Psychiatry 19:504–510

    Article  CAS  PubMed  Google Scholar 

  88. Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D, Mann M (2016) Plasma proteome profiling to assess human health and disease. Cell Syst 2:185–195

    Article  CAS  PubMed  Google Scholar 

  89. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Ebhardt HA, Root A, Sander C, Aebersold R (2015) Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15:3193–3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Harlan R, Zhang H (2014) Targeted proteomics: a bridge between discovery and validation. Expert Rev Proteomics 11:657–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Andreasson U, Blennow K, Zetterberg H (2016) Update on ultrasensitive technologies to facilitate research on blood biomarkers for central nervous system disorders. Alzheimers Dement (Amst) 3:98–102

    Google Scholar 

  93. Grasso G (2018) Mass spectrometry is a multifaceted weapon to be used in the battle against Alzheimer’s disease: amyloid beta peptides and beyond. Mass Spectrom Rev 38(1):34–48

    Article  PubMed  CAS  Google Scholar 

  94. Wilson DH, Rissin DM, Kan CW, Fournier DR, Piech T, Campbell TG et al (2016) The Simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J Lab Autom 21:533–547

    Article  CAS  PubMed  Google Scholar 

  95. Kuwano Y, Kamio Y, Kawai T, Katsuura S, Inada N, Takaki A et al (2011) Autism-associated gene expression in peripheral leucocytes commonly observed between subjects with autism and healthy women having autistic children. PLoS One 6(9):e24723. https://doi.org/10.1371/journal.pone.0024723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Talebizadeh Z, Aldenderfer R, Wen Chen X (2014) A proof-of-concept study: exon-level expression profiling and alternative splicing in autism using lymphoblastoid cell lines. Psychiatr Genet 24:1–9

    Article  CAS  PubMed  Google Scholar 

  97. Nishimura Y, Martin CL, Vazquez-Lopez A, Spence SJ, Alvarez-Retuerto AI, Sigman M et al (2007) Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet 16:1682–1698

    Article  CAS  PubMed  Google Scholar 

  98. Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J (2006) Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics 7:118. https://doi.org/10.1186/1471-2164-7-118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Chien W-H, Gau SS-F, Chen C-H, Tsai W-C, Wu Y-Y, Chen P-H et al (2013) Increased gene expression of FOXP1 in patients with autism spectrum disorders. Mol Autism 4:23. https://doi.org/10.1186/2040-2392-4-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ansel A, Rosenzweig JP, Zisman PD, Melamed M, Gesundheit B (2017) Variation in gene expression in autism spectrum disorders: an extensive review of transcriptomic studies. Front Neurosci 10:601. https://doi.org/10.3389/fnins.2016.00601

  101. Liu Y, Qing H, Deng Y (2014) Biomarkers in Alzheimer’s disease analysis by mass spectrometry-based proteomics. Int J Mol Sci 15:7865–7882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. West PR, Amaral DG, Bais P, Smith AM, Egnash LA, Ross ME et al (2014) Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS One 9:e112445. https://doi.org/10.1371/journal.pone.0112445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Wang H, Liang S, Wang M, Gao J, Sun C, Wang J et al (2016) Potential serum biomarkers from a metabolomics study of autism. J Psychiatry Neurosci 41:27–37

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yap IKS, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK (2010) Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res 9:2996–3004

    Article  CAS  PubMed  Google Scholar 

  105. Ming X, Stein TP, Barnes V, Rhodes N, Guo L (2012) Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res 11:5856–5862

    Article  CAS  PubMed  Google Scholar 

  106. Diémé B, Mavel S, Blasco H, Tripi G, Bonnet-Brilhault F, Malvy J et al (2015) Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology. J Proteome Res 14:5273–5282

    Article  PubMed  CAS  Google Scholar 

  107. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (2018) Current understanding of the human microbiome. Nat Med 24:392–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S et al (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474:380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Estes ML, McAllister AK (2016) Maternal immune activation: implications for neuropsychiatric disorders. Science 353:772–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Careaga M, Murai T, Bauman MD (2017) Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol Psychiatry 81:391–401

    Article  CAS  PubMed  Google Scholar 

  111. Chen S, Zhong X, Jiang L, Zheng X, Xiong Y, Ma S et al (2016) Maternal autoimmune diseases and the risk of autism spectrum disorders in offspring: a systematic review and meta-analysis. Behav Brain Res 296:61–69

    Article  PubMed  Google Scholar 

  112. Patel S, Masi A, Dale RC, Whitehouse AJO, Pokorski I, Alvares GA et al (2017) Social impairments in autism spectrum disorder are related to maternal immune history profile. Mol Psychiatry 23(8):1794–1797

    Article  PubMed  Google Scholar 

  113. Lombardo MV, Moon HM, Su J, Palmer TD, Courchesne E, Pramparo T (2018) Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol Psychiatry 23:1001–1013

    Article  CAS  PubMed  Google Scholar 

  114. Masi A, Quintana DS, Glozier N, Lloyd AR, Hickie IB, Guastella AJ (2015) Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol Psychiatry 20:440–446

    Article  CAS  PubMed  Google Scholar 

  115. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81

    Article  CAS  PubMed  Google Scholar 

  116. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li X-M et al (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207:111–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J et al (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68:368–376

    Article  PubMed  Google Scholar 

  118. Glatt SJ, Tsuang MT, Winn M, Chandler SD, Collins M, Lopez L et al (2012) Blood-based gene expression signatures of infants and toddlers with autism. J Am Acad Child Adolesc Psychiatry 51(9):934–44.e2. https://doi.org/10.1016/j.jaac.2012.07.007

    Article  Google Scholar 

  119. Felekkis K, Touvana E, Stefanou C, Deltas C (2010) microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 14:236–240

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Cao D-D, Li L, Chan W-Y (2016) MicroRNAs: key regulators in the central nervous system and their implication in neurological diseases. Int J Mol Sci 17(6):pii: E842. https://doi.org/10.3390/ijms17060842

    Article  PubMed Central  CAS  Google Scholar 

  121. Hicks SD, Middleton FA (2016) A comparative review of microRNA expression patterns in autism spectrum disorder. Front Psych 7:176. https://doi.org/10.3389/fpsyt.2016.00176

  122. Popov NT, Madjirova NP, Minkov IN, Vachev TI (2012) Micro RNA HSA-486-3P gene expression profiling in the whole blood of patients with autism. Biotechnol Biotechnol Equip 26:3385–3388

    Article  CAS  Google Scholar 

  123. Mundalil Vasu M, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T et al (2014) Serum microRNA profiles in children with autism. Mol Autism 5:40. https://doi.org/10.1186/2040-2392-5-40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Huang F, Long Z, Chen Z, Li J, Hu Z, Qiu R et al (2015) Investigation of gene regulatory networks associated with autism spectrum disorder based on MiRNA expression in China. PLoS One 10(6):e0129052. https://doi.org/10.1371/journal.pone.0129052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Hicks SD, Ignacio C, Gentile K, Middleton FA (2016) Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr 16:52. https://doi.org/10.1186/s12887-016-0586-x

  126. Zhang J, Li S, Li L, Li M, Guo C, Yao J et al (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB et al (2015) Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement 11:600–607.e1. https://doi.org/10.1016/j.jalz.2014.06.008

    Article  Google Scholar 

  128. Goetzl EJ, Mustapic M, Kapogiannis D, Eitan E, Lobach IV, Goetzl L et al (2016) Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. FASEB J 30:3853–3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tavakolizadeh J, Roshanaei K, Salmaninejad A, Yari R, Nahand JS, Sarkarizi HK et al (2018) MicroRNAs and exosomes in depression: potential diagnostic biomarkers. J Cell Biochem 119:3783–3797

    Article  CAS  PubMed  Google Scholar 

  130. András IE, Leda A, Contreras MG, Bertrand L, Park M, Skowronska M et al (2017) Extracellular vesicles of the blood-brain barrier: role in the HIV-1 associated amyloid beta pathology. Mol Cell Neurosci 79:12–22

    Article  PubMed  CAS  Google Scholar 

  131. Kuwano N, Kato TA, Mitsuhashi M, Sato-Kasai M, Shimokawa N, Hayakawa K et al (2018) Neuron-related blood inflammatory markers as an objective evaluation tool for major depressive disorder: an exploratory pilot case-control study. J Affect Disord 240:88–98

    Article  CAS  PubMed  Google Scholar 

  132. Castagnola M, Messana I, Inzitari R, Fanali C, Cabras T, Morelli A et al (2008) Hypo-phosphorylation of salivary peptidome as a clue to the molecular pathogenesis of autism spectrum disorders. J Proteome Res 7:5327–5332

    Article  CAS  PubMed  Google Scholar 

  133. Schwarz E, Guest PC, Rahmoune H, Wang L, Levin Y, Ingudomnukul E et al (2011) Sex-specific serum biomarker patterns in adults with Asperger’s syndrome. Mol Psychiatry 16:1213–1220

    Article  CAS  PubMed  Google Scholar 

  134. Momeni N, Bergquist J, Brudin L, Behnia F, Sivberg B, Joghataei MT et al (2012) A novel blood-based biomarker for detection of autism spectrum disorders. Transl Psychiatry 2:e91. https://doi.org/10.1038/tp.2012.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Singh S, Yazdani U, Gadad B, Zaman S, Hynan LS, Roatch N et al (2017) Serum thyroid-stimulating hormone and interleukin-8 levels in boys with autism spectrum disorder. J Neuroinflammation 14:113. https://doi.org/10.1186/s12974-017-0888-4

  136. Yang J, Chen Y, Xiong X, Zhou X, Han L, Ni L et al (2018) Peptidome analysis reveals novel serum biomarkers for children with autism spectrum disorder in China. Proteomics Clin Appl 12(5):e1700164. https://doi.org/10.1002/prca.201700164

    Article  CAS  Google Scholar 

  137. Garbett K, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K et al (2008) Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 30:303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Voineagu I, Eapen V (2013) Converging pathways in autism spectrum disorders: interplay between synaptic dysfunction and immune responses. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2013.00738

  139. Anitha A, Nakamura K, Thanseem I, Yamada K, Iwayama Y, Toyota T et al (2012) Brain region-specific altered expression and association of mitochondria-related genes in autism. Mol Autism 3:12. https://doi.org/10.1186/2040-2392-3-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Chow ML, Pramparo T, Winn ME, Barnes CC, Li HR, Weiss L et al (2012) Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLoS Genet 8(3):e1002592. https://doi.org/10.1371/journal.pgen.1002592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. James SJ, Shpyleva S, Melnyk S, Pavliv O, Pogribny IP (2014) Elevated 5-hydroxymethylcytosine in the Engrailed-2 (EN-2) promoter is associated with increased gene expression and decreased MeCP2 binding in autism cerebellum. Transl Psychiatry 4:e460. https://doi.org/10.1038/tp.2014.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhubi A, Chen Y, Dong E, Cook EH, Guidotti A, Grayson DR (2014) Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. Transl Psychiatry 4:e349. https://doi.org/10.1038/tp.2013.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kong S, Shimizu-Motohashi Y, Campbell M, Lee I, Collins C, Brewster S et al (2013) Peripheral blood gene expression signature differentiates children with autism from unaffected siblings. Neurogenetics 14:143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ivanov H, Stoyanova V, Popov N, Bosheva M, Vachev T (2015) Blood-based gene expression in children with Autism spectrum disorder. Bio Discovery 17:e8966. doi: 10.7750/BioDiscovery.2015.17.2 

    Google Scholar 

  145. Gregg JP, Lit L, Baron CA, Hertz-Picciotto I, Walker W, Davis RA et al (2008) Gene expression changes in children with autism. Genomics 91:22–29

    Article  CAS  PubMed  Google Scholar 

  146. Enstrom AM, Lit L, Onore CE, Gregg JP, Hansen RL, Pessah IN et al (2009) Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav Immun 23:124–133

    Article  CAS  PubMed  Google Scholar 

  147. Ziats MN, Rennert OM (2013) Sex-biased gene expression in the developing brain: implications for autism spectrum disorders. Mol Autism 4:10. https://doi.org/10.1186/2040-2392-4-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ginsberg MR, Rubin RA, Falcone T, Ting AH, Natowicz MR (2012) Brain transcriptional and epigenetic associations with autism. PLoS One 7(9):e44736. https://doi.org/10.1371/journal.pone.0044736

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kuwabara H, Yamasue H, Koike S,  Inoue H, Kawakubo Y, Kuroda M et al (2013) Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study. PLoS One 8:e73814. doi: 10.1371/journal.pone.0073814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Emond P, Mavel S, Aïdoud N, Nadal-Desbarats L, Montigny F, Bonnet-Brilhault F et al (2013) GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal Bioanal Chem 405:15:5291–5300

    Article  CAS  PubMed  Google Scholar 

  151. Gevi F, Zolla L, Gabriele S, Persico AM (2016) Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol Autism 7:47. https://doi.org/10.1186/s13229-016-0109-5

  152. El-Ansary AK, Bacha AGB, Al-Ayahdi LY (2011) Plasma fatty acids as diagnostic markers in autistic patients from Saudi Arabia. Lipids Health Dis 10:62. https://doi.org/10.1186/1476-511X-10-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lv Q-Q, You C, Zou X-B, Deng H-Z (2018) Acyl-carnitine, C5DC, and C26 as potential biomarkers for diagnosis of autism spectrum disorder in children. Psychiatry Res 267:277–280

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National Natural Science Foundation of China (grant no. 31870825) and Shenzhen Bureau of Science, Technology and Information (nos. JCYJ20150402100258220, JCYJ20150529164656093, JCYJ20170412110026229) for funds to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, L. et al. (2019). Advances in Biomarker Studies in Autism Spectrum Disorders. In: Guest, P. (eds) Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders. Advances in Experimental Medicine and Biology(), vol 1118. Springer, Cham. https://doi.org/10.1007/978-3-030-05542-4_11

Download citation

Publish with us

Policies and ethics