Skip to main content

Spectrum Leasing for Micro-operators Using Blockchain Networks

  • Conference paper
  • First Online:
Cognitive Radio Oriented Wireless Networks (CROWNCOM 2018)

Abstract

This paper introduces a spectrum sharing system for Micro Operators (MOs) using the blockchain network. In order to satisfy different network requirements for each service, the license for spectrum access should be dynamically allocated to the required spectrum bandwidth. We propose a spectrum lease contract for MOs to share spectrum with the Mobile Network Operator (MNO) is performed through the blockchain networks. Main reasons for applying the blockchain network to the spectrum sharing system are as follow. First, the blockchain networks share database with all participants. Second, networks have mutual trust among all participants. Third, it needs no central authority. Fourth, automated contract execution and transaction interactions are possible. The blockchain usage in the MO-based spectrum sharing system and the detailed process of spectrum lease contract are proposed. Then, the economic effects of spectrum sharing system for MOs is analyzed. The MO can be profitable by getting involved in the blockchain to take reward for a Proof of Work (PoW) and providing wireless service to its users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, J.G., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014). https://doi.org/10.1109/JSAC.2014.2328098. ISSN 0733-8716

    Article  Google Scholar 

  2. Park, J., Kim, S.L., Zander, J.: Tractable resource management with uplink decoupled millimeter-wave overlay in ultra-dense cellular networks. IEEE Trans. Wireless Commun. 15(6), 4362–4379 (2016)

    Article  Google Scholar 

  3. Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suarez, M., Robert, F.: Survey on spectrum utilization in Europe: measurements, analyses and observations. In: Proceedings of the 5th International Conference on Cognitive Radio Oriented Wireless Network and Communication (CROWNCOM), pp. 1–5 (2010)

    Google Scholar 

  4. Jorswieck, E.A., Badia, L., Fahldieck, T., Karipidis, E., Luo, J.: Spectrum sharing improves the network efficiency for cellular operators. IEEE Commun. Mag. 52(3), 129–136 (2014)

    Article  Google Scholar 

  5. Peha, J.M.: Approaches to spectrum sharing. IEEE Commun. Mag. 43(2), 10–12 (2005)

    Article  Google Scholar 

  6. Ofcom: TV White Spaces Pilots. http://stakeholders.ofcom.org.uk/spectrum/tv-white-spaces/white-spaces-pilot/

  7. WINNF Spectrum Sharing Committee. http://www.wirelessinnovation.org/spectrumsharing-committee

  8. ECC: Licensed Shared Access (LSA). ECC report 205 (2014)

    Google Scholar 

  9. Ahokangas, P., et al.: Future micro operators business models in 5G. In: Proceedings International Conference on Restructuring of the Global Economy (ROGE) (2016)

    Google Scholar 

  10. Matinmikko, M., Latva-aho, M., Ahokangas, P., Yrjölä, S., Koivumäki, T.: Micro operators to boost local service delivery in 5G. Wirel. Pers. Commun. J. 95, 69–82 (2017)

    Article  Google Scholar 

  11. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)

    Google Scholar 

  12. O’Hara, K.: Smart contracts - dumb idea. IEEE Internet Comput. 21(2), 97–101 (2017)

    Article  MathSciNet  Google Scholar 

  13. Greenspan, G.: Avoiding the pointless blockchain project, November 2015

    Google Scholar 

  14. Kang, J., Yu, R., Huang, X., Maharjan, S.: Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains. IEEE Trans. Ind. Inform. 13(6), 3154–3164 (2017)

    Article  Google Scholar 

  15. Yang, Z., Zheng, K., Yang, K., Leung, V.C.: A blockchain-based reputation system for data credibility assessment in vehicular networks. In: Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communication (PIMRC), pp. 1–5 (2017)

    Google Scholar 

  16. Xiong, Z., Feng, S., Niyato, D., Wang., Han., Z.: Edge Computing Resource Management and Pricing for Mobile Blockchain. arXiv:1710.01567 (2017)

  17. Christidis, K., Devetsiokiotis, M.: Blockchains and smart contracts for the Internet of Things. IEEE Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  18. Kotobi, K., Bilen, S.G.: Blockchain-enabled spectrum access in cognitive radio networks. In: 2017 Wireless Telecommunications Symposium (WTS), pp. 1–6 (2017)

    Google Scholar 

  19. Yrjölä, S.: Analysis of blockchain use cases in the citizens broadband radio service spectrum sharing concept. In: Marques, P., Radwan, A., Mumtaz, S., Noguet, D., Rodriguez, J., Gundlach, M. (eds.) CrownCom 2017. LNICST, vol. 228, pp. 128–139. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76207-4_11

    Chapter  Google Scholar 

  20. Ethereum, White Paper (2016). https://github.com/ethereum/wiki/wiki/White-Paper

  21. Yli-Huumo, J., Ko, D., Choi, S., Parka, S., Smolander, K.: Where is current research on blockchain technology? — a systematic review (2016)

    Article  Google Scholar 

  22. Jung, S.Y., Yu, S.M., Kim, S.L.: Utility-optimal partial spectrum leasing for future wireless services. In: 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2010)

    Google Scholar 

  23. Walrand, J.: Economic models of communication networks. In: Liu, Z., Xia, C.H. (eds.) Performance Modeling and Engineering, pp. 57–87. Springer, New York (2008). https://doi.org/10.1007/978-0-387-79361-0_3

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00923, Scalable Spectrum Sensing for Beyond 5G Communication).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Lyun Kim .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A. Proof of Proposition 1

To find the equilibrium price \( p_{M}^{*} \left( {p_{s} } \right) \), it is verified that the objective function of (7) should be a concave function of \( p_{M} (p_{s} ) \). Differentiate (7) is as follow:

$$ \frac{{\partial^{2} \pi^{MO} }}{{p_{M} \left( {p_{s} } \right)^{2} }} = 1 - \frac{{p_{s} }}{{p_{M}^{3} }} < 0, if\,\, p_{M}^{3} < p_{s} . $$
(12)

Concavity of (7) for \( p_{M} (p_{s} ) \) is guaranteed in \( p_{s} \in (p_{M}^{3} ,1] \). The equilibrium price can be obtained by solving the first order derivative of (7) as follows:

$$ \begin{aligned} \frac{{\partial \pi^{MO} }}{{\partial p_{M} \left( {p_{s} } \right)}} = p_{M} \left( {p_{s} } \right) - 1 - \frac{{p_{s} }}{2}\left( {1 - \frac{1}{{p_{M} \left( {p_{s} } \right)^{2} }}} \right) = 0 \hfill \\ 2p_{M} \left( {p_{s} } \right)^{3} - \left( {2 + p_{s} } \right)p_{M} \left( {p_{s} } \right)^{2} + p_{s} = 0 \hfill \\ \end{aligned} $$
(13)

Finally, three candidate solutions to maximize MO’s profit as follows:

$$ p_{M} \left( {p_{s} } \right) = \frac{1}{3}\left( {1 + \frac{{p_{s} }}{2}} \right)\left( {1 + 2cos\left( {\frac{\phi + 2n\pi }{3}} \right)} \right), where\,n \in \left\{ {1,2,3} \right\} . $$
(14)

There is a unique optimal solution when \( n = 3 \) because \( p_{M} (p_{s} ) \) is either 1 or negative when \( n = 1 \) or \( n = 2 \). \( {\blacksquare} \)

1.2 B. Proof of Proposition 2

The first order partial derivative of the objective function of (10) respect to \( m \) is

$$ \frac{{\partial \pi^{MO} }}{\partial m} = p_{w} + \left( {p_{M} - p_{s} } \right)\left( {\frac{{p_{M} \left( {1 - \gamma } \right)^{2} }}{{\left( {1 - m} \right)^{3} }} - \frac{1 - \gamma }{{\left( {1 - m} \right)^{2} }}} \right) $$
(15)

If the Eq. (15) is greater than \( 0 \) for all \( m \), the objective function has the maximum value when \( m \) is maximum, that is, when \( m = 1 \).

If \( p_{w} > \frac{1}{{p_{M}^{2} (1 - \gamma )}} \), the Eq. (15) has following relationship:

$$ \frac{{\partial \pi^{MO} }}{\partial m} > \frac{{1 - (p_{M} - p_{s} )}}{{p_{M}^{2} (1 - \gamma )}} + (p_{M} - p_{s} )\left( {\frac{1}{{p_{M}^{2} \left( {1 - \gamma } \right)}} - \frac{1 - \gamma }{{\left( {1 - m} \right)^{2} }}} \right) \cdots (*) $$
(16)

Note that the function \( \frac{1 - \gamma }{{\left( {1 - m} \right)^{2} }} \) is an increasing function for \( m \). Substitute \( m \) with the value \( 1 - p_{M} (1 - \gamma ) \) which is maximum value of \( m \) then the Eq. (16) is

$$ \begin{aligned} ( *) & > \frac{{1 - (p_{M} - p_{s} )}}{{p_{M}^{2} (1 - \gamma )}} + (p_{M} - p_{s} )\left( {\frac{1}{{p_{M}^{2} \left( {1 - \gamma } \right)}} - \frac{1 - \gamma }{{\left( {p_{M} \left( {1 - \gamma } \right)} \right)^{2} }}} \right) \\ & = \frac{{1 - \left( {p_{M} - p_{s} } \right)}}{{p_{M}^{2} \left( {1 - \gamma } \right)}} > 0 \\ \end{aligned} $$
(17)

Finally, \( \frac{{\partial \pi^{MO} }}{\partial m} > 0 \) for all \( m \) when \( p_{w} > \frac{1}{{p_{M}^{2} \left( {1 - \gamma } \right)}} \). \( {\blacksquare} \)

1.3 C. Proof of Proposition 3

The first order partial derivative of (10) respect to \( m \) is (18).

$$ \begin{aligned} \frac{{\partial \pi^{MO} }}{\partial m} & = p_{w} + \left( {p_{M} - p_{s} } \right)\frac{1 - \gamma }{{\left( {1 - m} \right)^{2} }}\left( {\frac{1 - \gamma }{1 - m}p_{M} - 1} \right) \\ & < \left( {p_{M} - p_{s} } \right)\frac{1 - \gamma }{{\left( {1 - m} \right)^{2} }}\left( {\left( {1 - m} \right)^{2} + \left( {1 - \frac{1}{1 - m}} \right)\frac{1 - \gamma }{1 - m}p_{M} - 1} \right) \cdots (**) \\ \end{aligned} $$
(18)

The Eq. (18) is negative when \( m \ge \gamma \) and \( 0 < m < 1 \).

Finally, \( \frac{{\partial \pi^{MO} }}{\partial m} < 0 \) for all \( m \) when \( p_{w} < (1 - \gamma )(p_{M} - p_{s} )(1 - p_{M} ) \). \( {\blacksquare} \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, J., Cha, H., Kim, SL. (2019). Spectrum Leasing for Micro-operators Using Blockchain Networks. In: Moerman, I., Marquez-Barja, J., Shahid, A., Liu, W., Giannoulis, S., Jiao, X. (eds) Cognitive Radio Oriented Wireless Networks. CROWNCOM 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 261. Springer, Cham. https://doi.org/10.1007/978-3-030-05490-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05490-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05489-2

  • Online ISBN: 978-3-030-05490-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics