Skip to main content

Learning from Monte Carlo Rollouts with Opponent Models for Playing Tron

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11352))

Included in the following conference series:

  • 960 Accesses

Abstract

This paper describes a novel reinforcement learning system for learning to play the game of Tron. The system combines Q-learning, multi-layer perceptrons, vision grids, opponent modelling, and Monte Carlo rollouts in a novel way. By learning an opponent model, Monte Carlo rollouts can be effectively applied to generate state trajectories for all possible actions from which improved action estimates can be computed. This allows to extend experience replay by making it possible to update the state-action values of all actions in a given game state simultaneously. The results show that the use of experience replay that updates the Q-values of all actions simultaneously strongly outperforms the conventional experience replay that only updates the Q-value of the performed action. The results also show that using short or long rollout horizons during training lead to similar good performances against two fixed opponents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baxter, J., Tridgell, A., Weaver, L.: Learning to play chess using temporal differences. Mach. Learn. 40(3), 243–263 (2000)

    Article  Google Scholar 

  2. Bom, L., Henken, R., Wiering, M.: Reinforcement learning to train Ms. Pac-Man using higher-order action-relative inputs. In: 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pp. 156–163 (2013)

    Google Scholar 

  3. de Bruin, T., Kober, J., Tuyls, K., Babuška, R.: The importance of experience replay database composition in deep reinforcement learning. In: Deep Reinforcement Learning Workshop, NIPS (2015)

    Google Scholar 

  4. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). CoRR abs/1511.07289 (2015)

    Google Scholar 

  5. Ganzfried, S., Sandholm, T.: Game theory-based opponent modeling in large imperfect-information games. In: the 10th International Conference on Autonomous Agents and Multiagent Systems-Volume 2, pp. 533–540. International Foundation for Autonomous Agents and Multiagent Systems (2011)

    Google Scholar 

  6. He, H., Boyd-Graber, J.L., Kwok, K., Daumé III, H.: Opponent modeling in deep reinforcement learning. CoRR abs/1609.05559 (2016)

    Google Scholar 

  7. Knegt, S., Drugan, M., Wiering, M.: Opponent modelling in the game of Tron using reinforcement learning. In: 10th International Conference on Agents and Artificial Intelligence, ICAART 2018, pp. 29–40 (2018)

    Google Scholar 

  8. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Chapter  Google Scholar 

  9. Lin, L.J.: Reinforcement Learning for Robots Using Neural Networks. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, January 1993

    Google Scholar 

  10. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  11. van Otterlo, M., Wiering, M.: Reinforcement learning and Markov decision processes. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning: State-of-the-Art, pp. 3–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3_1

    Chapter  Google Scholar 

  12. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel Distributed Processing, vol. 1, pp. 318–362. MIT Press (1986)

    Google Scholar 

  13. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3, 210–229 (1959)

    Article  MathSciNet  Google Scholar 

  14. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  15. Shantia, A., Begue, E., Wiering, M.: Connectionist reinforcement learning for intelligent unit micro management in Starcraft. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1794–1801. IEEE (2011)

    Google Scholar 

  16. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  17. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017)

  18. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature 550, 354 (2017)

    Article  Google Scholar 

  19. Southey, F., et al.: Bayes bluff: opponent modelling in poker. In: Proceedings of the 21st Annual Conference on Uncertainty in Artificial Intelligence (UAI), pp. 550–558 (2005)

    Google Scholar 

  20. Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach. Learn. 3(1), 9–44 (1988)

    Google Scholar 

  21. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge (1998)

    Google Scholar 

  22. Tesauro, G.: Temporal difference learning and TD-Gammon. Commun. ACM 38(3), 58–68 (1995)

    Article  Google Scholar 

  23. Tesauro, G., Galperin, G.R.: On-line policy improvement using Monte-Carlo search. In: Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems 9, pp. 1068–1074. MIT Press (1997)

    Google Scholar 

  24. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

    MATH  Google Scholar 

  25. Werbos, P.J.: Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Wiering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Knegt, S.J.L., Drugan, M.M., Wiering, M.A. (2019). Learning from Monte Carlo Rollouts with Opponent Models for Playing Tron. In: van den Herik, J., Rocha, A. (eds) Agents and Artificial Intelligence. ICAART 2018. Lecture Notes in Computer Science(), vol 11352. Springer, Cham. https://doi.org/10.1007/978-3-030-05453-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05453-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05452-6

  • Online ISBN: 978-3-030-05453-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics