Skip to main content

Thermal Behaviour and Crystallization of Green Biocomposites

  • Chapter
  • First Online:
Book cover Sustainable Polymer Composites and Nanocomposites
  • 2709 Accesses

Abstract

The thermal behaviour of the green composites (GCs) was an interesting issue discussed in many studies of recent years. In the foreground, unquestionable is the role played by the interface between natural fibers or cellulose nanoparticles and the polymer matrix, which also is most presented in this chapter. There were presented the effects at interfaces on thermal behaviour of the different polymer matrix, most of them biodegradable, that was reinforced using various methods with natural fillers (fibers or cellulose nanoparticles) isolated and extracted from different bioresources. Before starts to present literature results, the most common thermal analytical techniques were reviewed. Thermal behaviour of the most representative from the GCs class was presented in this chapter. Because interfaces of GCs show a greater impact on thermal transitions, firstly were presented results related to the stable temperature range when the important thermal transitions like glass transition, melting or/and (cold) crystallization occurs. The modifications occurred on glass transition, melting and crystallization temperatures or on the crystallinity index were discussed as a function of their content in the GCs or by chemical treatment applied (e.g. hydrolyzation, alkalinization, silanization) or surface treatments on fillers. The role of fillers reinforced in a polymer matrix, which affects morphology development at interface region was highlighted, too. Then, in the next chapter subsection were presented representative works for a discussed domain that emphasize once again the interface effects on the thermal degradation temperatures or on the mechanism of the thermal degradation as well. Also, fibers content or applied chemical treatment showed a major effect on thermal degradation as will be seen next. Like a general conclusion on thermal behavior of the GCs, three important key factors in the preparing of a GCs were highlighted: the natural filler dimensions (high aspect ratio), a good dispersion (to prevent heterogeneity), and the last, but maybe most important, is the chemical treatment applied on the surface. If these conditions were fulfilled, a biomaterial presenting good thermal properties automatically will show good mechanical performances, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APTES:

3-aminopropyltriethoxysilane

Ac-CNC:

Acetate cellulose nanocrystals

ACNC:

Acetylated cellulose nanocrystals

ATBC:

Acetyltributyl citrate ATBC

A-sisal:

Alkali treated sisal fibers

BC:

Bacterial cellulose

BCN:

Bacterial nanocellulose

BF:

Bamboo fibers

BPU:

Biobased polyurethane

CA:

Citric acid CA

CE:

Cellulose

CF:

Cellulose fibers

ChNC:

Chitin nanocrystals

CO:

Cotton

CNC:

Cellulose nanocrystals

CNCSD:

Conventional spray dried cellulose nanocrystals

CNCFD:

Freeze dried cellulose nanocrystals

C18-g-CNC:

Cellulose nanocrystals grafted with long alkyl chain (C18)

CNF:

Cellulose nanofibers

CNC-g-PLLA:

Poly(l-lactide)-grafted-cellulose nanocrystals

CNW:

Cellulose nanowhiskers

Cp:

Heat capacity

ΔCp:

Heat capacity step (at glass transition)

ΔEa:

Activation energy

DDMSiCl:

N-dodecyldimethylchlorosilane

DMA:

Dynamic mechanical analysis

DSC:

Differential scanning calorimetry

DTG:

Derivative thermogravimetry

DTA:

Differential thermal analysis

ENR:

Epoxidized natural rubber

EVA:

Ethylene vinyl alcohol

GC:

Green composite

GLU:

Glutaraldehyde

Gly:

Glycerol

GTA:

Glycerol triacetate

GMA:

Glycidyl methacrylate

GPS:

3-glycidoxypropyltrimethoxy silane

dH/dt:

Enthalpy variation in time

HAlk:

Alkalinized hemp fibers

HCE:

Hydrolysed cellulose

HF:

Hemp fibers

HW:

Hard wood

ΔH:

Enthalpy

ΔHm:

Melting enthalpy

ΔHc:

Crystallization enthalpy

KF:

Kenaf fibers

Kraft:

Bleached kraft softwood

LA-CNC:

Lactate cellulose nanocrystals

LDI:

Lysine-based diisocyanate

LDPE:

Low density polyethylene

MA:

Maleic anhidride

MBC:

Modified bamboo cellulose

MC:

Microcrystalline cellulose

MFC:

Microfibrilated cellulose

MRSF:

Modified rice straw fibers

NBSK:

Black spruce and northern bleached softwood kraft

ODI:

Octadecyl isocyanate

PBA:

Poly(butyl acrylate)

PBAT:

Poly(butylene adipate-co-terephthalate)

PBI:

4-phenylbutyl isocyanate)

PBSu:

Poly(butylene succinate)

PCL:

Poly(ε-caprolactone)

PFA:

Polyfurfuril alchohol

PHB:

Poly(hydroxy butyrate)

PHBV:

Poly(hydroxy butyrate-co-valerate)

PL:

Plastified lignin

PLA:

Poly(lactic acid)

PLA-g-CNC:

Poly(lactic acid)-grafted-cellulose nanocrystals

PLA-g-MA:

Poly(lactic acid-grafted-maleic anhydride)

PLLA:

Poly(l-lactide)

PLM:

Polarizing light microscopy

PPC:

Poly(propylene carbonate)

PP:

Poly(propylene)

PP-g-MA:

Poly(propylene-grafted-maleic anhydride)

PU:

Polyurethane

PVC:

Poly(vinyl chloride)

PVA:

Poly(vinyl alchohol)

PVAc:

Poly(vinyl acetate)

RF:

Ramie fibers

RH:

Rice husk

RS:

Rice straw

SEBS:

Styrene-ethylene-butadiene-styrene

SEBS-g-MA:

Maleic anhydride-grafted-styrene-ethylene-butadiene-styrene

SCF:

Standard size cellulose fibers

SPA:

Anhydride plasticized soy protein

S-sisal:

Sylane treated sisal fibers

SW:

Softwood

TAC:

Triacetate citrate TAC

TDI:

Toluene isocyanate TDI

TGA:

Thermogravimetric analysis

Tc:

Crystallization temperature

Tc(onset):

Crystallization onset temperature

Tcc:

Cold crystallization temperature

Tg:

Glass transition

Tm:

Melting temperature

\(\text{T}_{\text{m}}{^{\text{o}}}\) :

Equilibrium melting point

Tmax:

Temperature of maximum decomposition rate

TPS:

Thermoplastic starch

ΔS:

Entropy

U-sisal:

Untreated sisal fibers

χc:

Crystallinity index

σ e :

Fold surface free energy

References

  1. Das O, Bhattacharyya D, Sarmah AK (2016) Sustainable ecocomposites obtained from waste derived biochar: a consideration in performance properties, production costs, and environmental impact. J Clean Prod 129:159–168

    Article  Google Scholar 

  2. Mathot VBF (ed) (1994) Calorimetry and thermal analysis of polymers. Carl Hanser Verlag, München

    Google Scholar 

  3. Turi EA (ed) (1997) Thermal characterization of polymeric materials. Academic Press, New York

    Google Scholar 

  4. Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. J Cleaner Prod 149:582–596

    Article  Google Scholar 

  5. Monteiro SN, Calado V, Rodriguez RJS et al (2012) Thermogravimetric behavior of natural fibers reinforced polymer composites—an overview. Mat Sci Eng A 557:17–28

    Article  CAS  Google Scholar 

  6. Signori F, Pelagaggi M, Bronco S et al (2012) Amorphous/crystal and polymer/filler interphases in biocomposites from poly(butylene succinate). Thermochim Acta 543:74–81

    Article  CAS  Google Scholar 

  7. Shinoj S, Visvanathan R, Panigrahi S et al (2011) Oil palm fiber (OPF) and its composites: a review. Ind Crops Prod 33:7–22

    Article  CAS  Google Scholar 

  8. Cuinat-Guerraz N, Dumont M-J, Hubert P, (2016) Environmental resistance of flax/bio-based epoxy and flax/polyurethane composites manufactured by resin transfer moulding. Compos Part A 88:140–147

    Google Scholar 

  9. Yu T, Ren J, Li S et al (2010) Effect of fiber surface treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A 41:499–505

    Google Scholar 

  10. Yu T, Jiang N et al (2014) Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Compos Part A 64:139–146

    Google Scholar 

  11. Shih YF, Huang CC (2011) Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J Polym Res 18:2335–2340

    Google Scholar 

  12. Haafiz M, Hassan A, Khalil A et al (2016) Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. Int J Biol Macromol 85:370–378

    Article  CAS  Google Scholar 

  13. Mandal A, Chakrabarty D (2014) Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J Ind Eng Chem 20:462–473

    Article  CAS  Google Scholar 

  14. Lin N, Huang J, Chang PR et al (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842

    Article  CAS  Google Scholar 

  15. Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265

    Article  CAS  Google Scholar 

  16. Hu X, Xu C, Gao J et al (2013) Toward environment-friendly composites of poly(propylene carbonate) reinforced with cellulose nanocrystals. Compos Sci Technol 78:63–68

    Article  CAS  Google Scholar 

  17. Cao X, Chen Y, Chang PR et al (2008) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109:3804–3810

    Article  CAS  Google Scholar 

  18. Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204

    Article  CAS  Google Scholar 

  19. Chaichi M, Hashemi M, Badii F et al (2017) Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr Polym 157:167–175

    Article  CAS  Google Scholar 

  20. Abdul Khalil HPS, Bhat IUH, Jawaid M et al (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

    Article  CAS  Google Scholar 

  21. Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A 37:80–91

    Article  CAS  Google Scholar 

  22. Liu H, Huang Y et al (2010) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohydr Polym 79:513–519

    Article  CAS  Google Scholar 

  23. Ramesh M (2016) Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog Mat Sci 78–79:1–92

    Article  Google Scholar 

  24. Buzarovska A, Bogoeva-Gaceva G, Grozdanov A et al (2007) Crystallization behavior of poly(hydroxybutyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites. J Mater Sci 42:6501–6509

    Article  CAS  Google Scholar 

  25. Dobreva T, Perena JM, Perez E et al (2010) Crystallization behavior of poly(l-lactic acid)-based ecocomposites prepared with Kenaf fiber and rice straw. Polym Compos 31(6):974–984

    Article  CAS  Google Scholar 

  26. Qin L, Qiu J, Liu M et al (2011) Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem Eng J 166:772–778

    Article  CAS  Google Scholar 

  27. Zhao Q, Tao J, Yam RCM et al (2008) Biodegradation behavior of polycaprolactone/rice husk ecocomposites in simulated soil medium. Polym Degrad Stab 93:1571–1576

    Article  CAS  Google Scholar 

  28. Yu T, Li Y (2014) Influence of poly(butylenes adipate-co-terephthalate) on the properties of the biodegradable composites based on ramie/poly(lactic acid). Compos Part A 58:24–29

    Google Scholar 

  29. Yu T, Jiang N, Li Y (2014) Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Compos Part A 64:139–146

    Google Scholar 

  30. Dong Y, Ghataura A, Takagi H et al (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos Part A 63:76–84

    Google Scholar 

  31. Wang Y, Tong B, Hou S et al (2011) Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos Part A 42:66–74

    Google Scholar 

  32. Biswal M, Mohanty S, Nayak SK (2009) Influence of organically modified nanoclay on the performance of pineapple leaf fiber-reinforced polypropylene nanocomposites. J Appl Polym Sci 114:4091–4103

    Article  CAS  Google Scholar 

  33. Chollakup R, Tantatherdtam R, Ujjin S et al (2011) Pineapple leaf fiber reinforced thermoplastic composites: effects of fiber length and fiber content on their characteristics. J Appl Polym Sci 119:1952–1960

    Article  CAS  Google Scholar 

  34. Torres-Tello EV, Robledo-Ortíz JR, González-García Y et al (2017) Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Ind Crops Prod 99:117–125

    Article  CAS  Google Scholar 

  35. Ding WD, Jahani D, Chang E et al (2016) Development of PLA/cellulosic fiber composite foams using injection molding: crystallization and foaming behaviors. Compos Part A 83:130–139

    Google Scholar 

  36. Le Moigne N, Longerey M, Taulemesse J-M et al (2014) Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane treatments. Ind Crops Prod 52:481–494

    Article  Google Scholar 

  37. Pracella M, Chionna D, Anguillesi I et al (2006) Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres. Compos Sci Technol 66:2218–2230

    Article  CAS  Google Scholar 

  38. Yang S, Madbouly SA, Schrader JA et al (2015) Characterization and biodegradation behavior of bio-based poly(lactic acid) and soy protein blends for sustainable horticultural applications. Green Chem 17:380–393

    Article  CAS  Google Scholar 

  39. Cai J, Liu M, Wang L et al (2011) Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym 86:941–947

    Article  CAS  Google Scholar 

  40. Cai J, Xiong Z, Zhou M et al (2014) Thermal properties and crystallization behavior of thermoplastic starch/poly(ε-caprolactone) composites. Carbohydr Polym 102:746–754

    Article  CAS  Google Scholar 

  41. Luduena L, Vázquez A, Alvarez V (2012) Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydr Polym 87:411–421

    Article  CAS  Google Scholar 

  42. Du Y, Wu T, Yan N et al (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Compos Part B 56:717–723

    Google Scholar 

  43. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192

    Article  CAS  Google Scholar 

  44. Suryanegara L, Nakagaito AN, Yano H (2010) Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose 17:771–778

    Article  CAS  Google Scholar 

  45. Qiu K, Netravali AN (2012) Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos Sci Technol 72:1588–1594

    Article  CAS  Google Scholar 

  46. Haafiz MKM, Hassan A, Zakaria Z et al (2013) Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr Polym 98:139–145

    Article  CAS  Google Scholar 

  47. Kowalczyk M, Piorkowska E, Kulpinski P et al (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos Part A 42:1509–1514

    Article  Google Scholar 

  48. Benhamou K, Kaddami H, Magnin A et al (2015) Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Carbohydr Polym 122:202–211

    Article  CAS  Google Scholar 

  49. Frone AN, Berlioz S, Chailan JF et al (2013) Morphology and thermal properties of PLA—cellulose nanofibers composites. Carbohydr Polym 91:377–382

    Article  CAS  Google Scholar 

  50. Abdulkhani A, Hosseinzadeh J, Ashori A et al (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79

    Article  CAS  Google Scholar 

  51. Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155

    Article  CAS  Google Scholar 

  52. Herrera N, Salaberria AM, Mathew AP et al (2016) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos Part A 83:89–97

    Google Scholar 

  53. Almasi H, Ghanbarzadeh B, Dehghannya J (2015) Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): morphological and physical properties. Food Pack Shelf Life 5:21–31

    Article  Google Scholar 

  54. Mariano P, Minhaz-Ul H, Debora P (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bionanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55:3720–3728

    Article  Google Scholar 

  55. Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815–821

    Article  CAS  Google Scholar 

  56. Bitinis N, Fortunati E, Verdejo R et al (2013) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: properties evaluation. Carbohydr Polym 96:621–627

    Article  CAS  Google Scholar 

  57. Yu HY, Qin ZY, Liu L et al (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28

    Article  CAS  Google Scholar 

  58. Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114

    Article  CAS  Google Scholar 

  59. Miao C, Hamad WY (2016) In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide)(PLLA) nanomaterials and applications in nanocomposite processing. Carbohydr Polym 153:549–558

    Article  CAS  Google Scholar 

  60. Fortunati E, Armentano I, Zhou Q et al (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605

    Article  CAS  Google Scholar 

  61. Morelli CL, Belgacem MN, Branciforti MC et al (2016) Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Compos Part A 83:80–88

    Google Scholar 

  62. Yu HY, Qin ZY (2014) Surface grafting of cellulose nanocrystals with poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Carbohydr Polym 101:471–478

    Article  CAS  Google Scholar 

  63. Arrieta MP, López J, López D et al (2016) Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Ind Crops Prod 93:290–301

    Article  CAS  Google Scholar 

  64. Malmir S, Montero B, Rico M et al (2017) Morphology, thermal and barrier properties of biodegradable films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Compos Part A 93:41–48

    Google Scholar 

  65. Yu HY, Yao JM (2016) Reinforcing properties of bacterial polyester with different cellulose nanocrystals via modulating hydrogen bonds. Compos Sci Technol 136:53–60

    Article  CAS  Google Scholar 

  66. Monteiro SN, Calado V, Rodriguez RJS et al (2012) Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Technol 1(2):117–126

    Article  CAS  Google Scholar 

  67. Rosa MF, Chiou BS, Medeiros ES et al (2009) Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresour Technol 100:5196–5202

    Article  CAS  Google Scholar 

  68. Morandim-Giannetti AA, Agnelli JAM, Lanças BZ et al (2012) Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties. Carbohydr Polym 87:2563–2568

    Article  CAS  Google Scholar 

  69. Guigo N, Mija A, Vincent L et al (2010) Eco-friendly composite resins based on renewable biomass resources: polyfurfuryl alcohol/lignin thermosets. Eur Polym J 46:1016–1023

    Article  CAS  Google Scholar 

  70. Deka H, Misra M, Mohanty A (2013) Renewable resource based “all green composites” from kenaf biofiber and poly(furfuryl alcohol) bioresin. Ind Crops Prod 41:94–101

    Article  CAS  Google Scholar 

  71. Azwa ZN, Yousif BF (2013) Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polym Degrad Stab 98:2752–2759

    Article  CAS  Google Scholar 

  72. Elkhaoulani A, Arrakhiz FZ, Benmoussa K et al (2013) Mechanical and thermal properties of polymer composite based on natural fibers: moroccan hemp fibers/polypropylene. Mater Des 49:203–208

    Article  CAS  Google Scholar 

  73. Panaitescu DM, Vuluga Z, Ghiurea M et al (2015) Influence of compatibilizing system on morphology, thermal and mechanical properties of high flow polypropylene reinforced with short hemp fibers. Compos Part B 69:286–295

    Google Scholar 

  74. Bakare FO, Ramamoorthy SK, Åkesson D et al (2016) Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements. Compos Part A 83:176–184

    Google Scholar 

  75. Kim KW, Lee BH, Kim HJ et al (2012) Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim 108:1131–1139

    Article  CAS  Google Scholar 

  76. Thao Tran TP, Bénézet JC, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA)biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod 58:111–124

    Article  Google Scholar 

  77. Thakur VJ, Thakur MT, Gupta RK (2013) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51

    Article  CAS  Google Scholar 

  78. Priya B, Gupta VK, Pathania D (2014) Synthesis, characterization and antibacterial activity of biodegradablestarch/PVA composite films reinforced with cellulosic fiber. Carbohydr Polym 109:171–179

    Article  CAS  Google Scholar 

  79. Peresin MS, Habibi Y, Zoppe JO et al (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681

    Article  CAS  Google Scholar 

  80. Park SH, Oh KW, Kim SH (2013) Reinforcement effect of cellulose nanowhisker on bio-based polyurethane. Compos Sci Technol 86:82–88

    Article  CAS  Google Scholar 

  81. Spinella S, Lo Re G, Liu B et al (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9–17

    Article  CAS  Google Scholar 

  82. Garcia NL, Ribba L, Dufresne A et al (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym 84:203–210

    Article  CAS  Google Scholar 

  83. Montero B, Rico M, Rodríguez-Llamazares S et al (2017) Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr Polym 157:1094–1104

    Article  CAS  Google Scholar 

  84. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345

    Article  CAS  Google Scholar 

  85. Martins IMG, Magina SP, Oliveira L et al (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69:2163–2168

    Article  CAS  Google Scholar 

  86. Meneguin AB, Cury BSF, Dos Santos AM (2017) Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr Polym 157:1013–1023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile Cristian Grigoras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grigoras, V.C. (2019). Thermal Behaviour and Crystallization of Green Biocomposites. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_41

Download citation

Publish with us

Policies and ethics