Skip to main content

Impact of Nanoparticle Shape, Size, and Properties of Silver Nanocomposites and Their Applications

  • Chapter
  • First Online:

Abstract

Silver-containing nanocomposites have recently attracted the immense attention of researchers from different fields because of the dual benefits from silver nanoparticle and matrix elements. There are four types of synthetic methods or silver nanoparticles and three types of composite systems currently used for their preparations, which are briefly described in this chapter. Silver nanoparticles are widely used for biomedical applications due to their antibacterial and antiviral properties. In addition, silver nanocomposites are extensively used in other fields including, food industries, textile industries, electronic industries etc. Silver nanoparticles embedded polymer matrix composites are promising candidates for biomaterials, photovoltaic materials, and catalysts. This chapter describes different methods employed for synthesis of silver nanoparticle-containing nanocomposites and their potential applications.

Arpita Hazra Chowdhury, Rinku Debnath—These authors contributed equally to this manuscript.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Khademhosseini A, Langer R (2006) Drug delivery and tissue engineering. Chem Eng Prog 102(2):38–42

    CAS  Google Scholar 

  2. Faraday M (1857) The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145

    Article  Google Scholar 

  3. Konrad MP, Doherty AP, Bell SEJ (2013) Stable and uniform SERS signals from self assembled two-dimensional interfacial arrays of optically coupled Ag nanoparticles. Anal Chem 85:6783–6789

    Article  CAS  Google Scholar 

  4. Meheretu GM, Cialla D, Popp J (2014) Surface enhanced raman spectroscopy on silver nanoparticles. Inter J Biochemistry Biophysics 2:63–67

    Google Scholar 

  5. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874

    Article  CAS  Google Scholar 

  6. Jana S, Pal T (2007) Synthesis, characterization and catalytic application of silver nanoshell coated functionalized polystyrene beads. J Nanosci Nanotechnol 7:2151–2156

    Article  CAS  Google Scholar 

  7. Stiufiuc R, Iacovita C, Lucaciu CM, Stiufiuc G, Dutu AG, Braescu C, Leopold N (2013) SER-sactive silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol. Nanoscale Res Lett 8:47

    Article  CAS  Google Scholar 

  8. Evtugyn GA, Shamagsumova RV, Padnya PV, Stoikov II, Antipin IS (2014) Cholinesterase sensor based on glassy carbon electrode modified with Ag nanoparticles decorated with macrocyclic ligands. Talanta 127:9–17

    Article  CAS  Google Scholar 

  9. Thanha NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5:213–230

    Article  CAS  Google Scholar 

  10. Alon N, Miroshnikov Y, Perkas N, Nissan I, Gedanken A, Shefi (2014) Substrates coated with silver nanoparticles as a neuronal regenerative material. Int J Nanomed 9:23–31

    Google Scholar 

  11. Bu Y, Lee S (2012) Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and AgcoreAushell nanoparticles. ACS Appl Mater Interfaces 4:3923–3931

    Article  CAS  Google Scholar 

  12. Luo Y, Ma L, Zhang X, Liang A, Jiang Z (2015) SERS detection of dopamine using label free acridine red as molecular probe in reduced graphene oxide/silver nanotriangle sol substrate. Nanoscale Res Lett 10:230

    Article  CAS  Google Scholar 

  13. Rivero PJ, Urrutia A, Goicoechea J, Matias IR, Arregui FJ (2013) A lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing. Sens Actuators B 187:40–44

    Google Scholar 

  14. El-Nour KMM, Eftaiha A, Al-Reda A, Ammar AA (2010) Synthesis and applications of silver nanoparticles. Arabian J Chem 3:135–140

    Article  CAS  Google Scholar 

  15. Smetana AB, Klabunde KJ, Sorensen CM (2005) Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. J Colloid Interface Sci 284:521–526

    Article  CAS  Google Scholar 

  16. Wakuda D, Kim KS, Suganuma K (2008) Room temperature sintering of Ag nanoparticles by drying solvent. Scrip Mater 59:649–652

    Article  CAS  Google Scholar 

  17. Lee H, Chou KS (2005) Inkjet printing of nanosized silver colloids. Nanotechnology 16:2436–2441

    Article  CAS  Google Scholar 

  18. Anna Z, Ewa S, Adriana Z, Maria G, Jan H (2009) Preparation of silver nanoparticles with controlled particle size. Procedia Chem 1:1560–1566

    Article  CAS  Google Scholar 

  19. Twardowski TE (2007) Introduction to nanocomposite materials: properties, processing, characterization. Destech Publications, Incorporated, Lancaster, PA

    Google Scholar 

  20. Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169

    Article  CAS  Google Scholar 

  21. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  CAS  Google Scholar 

  22. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B Polym Phys 52:791–806

    Article  CAS  Google Scholar 

  23. Hu H, Onyebueke L, Abatan A (2010) Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J Miner Mater Charact Eng 9:275

    Google Scholar 

  24. Gleiter H (1992) Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct Mater 1:1–19

    Article  CAS  Google Scholar 

  25. Anna Z, Ewa S, Adriana Z, Maria G, Jan H (2009) Preparation of silver nanoparticles with controlled particle size. ProcediaChem 1:1560–1566

    Google Scholar 

  26. Gurav AS, Kodas TT, Wang LM, Kauppinen EI, Joutsensaari J (1994) Generation of nanometer-size fullerene particles via vapor condensation. J Joutsensaari Chem Phys Lett 218:304–308

    Article  CAS  Google Scholar 

  27. Kruis F, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size selected PbS nanoparticles. Mater Sci Eng B 69:329–334

    Google Scholar 

  28. Magnusson MH, Deppert K, Malm JO, Bovin JO, Samuelson L (1999) Gold nanoparticles: production, reshaping, and thermal charging. J Nanoparticle Res 1:243–251

    Article  CAS  Google Scholar 

  29. Mafune F, Takeda J, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117

    Google Scholar 

  30. Sylvestre JP, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J Am Chem 126:7176–7177

    Article  CAS  Google Scholar 

  31. Pacioni NL, Borsarelli CD, Rey V, Veglia AV (2015) Synthetic routes for the preparation of silver nanoparticles: a mechanistic perspective. In: Udekwu KI, Alarcón EL, Griffith M (eds) Silver nanoparticle applications: in the fabrication and design of medical and biosensing devices. Springer International Publishing AG, Switzerland, p 13

    Google Scholar 

  32. Huang H, Yang Y (2008) Preparation of silver nanoparticles in inorganic clay suspensions. Compos Sci Technol 68:2948–2953

    Article  CAS  Google Scholar 

  33. Zhang M, Zhang K, De Gusseme B, Verstraete W, Field R (2014) The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by lactobacillus fermentum. Biofouling 30:347–357

    Article  CAS  Google Scholar 

  34. Priyadarshini S, Gopinath V, MeeraPriyadharsshini N, MubarakAli D, Velusamy P (2013) Synthesis of anisotropic silvernanoparticles using novel strain, bacillus flexus and its biomedical application. Colloids Surf B 102:232–237

    Article  CAS  Google Scholar 

  35. Gurunathan S, Kalishwaralal K, Vaidyanathan R et al (2009) Biosynthesis, purification and characterization of silvernanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74:328–335

    Article  CAS  Google Scholar 

  36. Minaeian S, Shahverdi AR, Nohi AS, Shahverdi HR (2008) Extracellular biosynthesis of silver nanoparticles by somebacteria. J Sci (Islamic Azad University) 17:1–4

    Google Scholar 

  37. Vahabi K, Ali Mansoori G, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus, trichodermareesei. Insciences J 1:65–79

    Article  CAS  Google Scholar 

  38. Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B 107:227–234

    Article  CAS  Google Scholar 

  39. Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta Part A Mol Biomol Spectrosc 114:144–147

    Google Scholar 

  40. Kalishwaralal K, Deepak V, Pandian SRK, Kartikeyan B, Kottaisamy M, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using brevibacterium casei. Colloids Surf B Biointerfaces 77:257–262

    Article  CAS  Google Scholar 

  41. Hazra Chowdhury I, Ghosh S, Roy M, Naskar MK (2015) Green synthesis of water-dispersible silver nanoparticles at room temperature using green carambola (star fruit) extract. J Sol-Gel Sci Technol 73:199–207

    Article  CAS  Google Scholar 

  42. Ashokkumar S, Ravi S, Kathiravan V, Velmurugan S (2015) Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectroscopy 134:34–39

    Article  CAS  Google Scholar 

  43. Raut RW, Mendhulkar VD, Kashid SB (2014) Photosensitized synthesis of silver nanoparticles using withania somnifera leaf powder and silver nitrate. J Photochem Photobiol, B 132:45–55

    Article  CAS  Google Scholar 

  44. Rajakumar G, Abdul Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118:196–203

    Article  CAS  Google Scholar 

  45. Santhoshkumar T, Rahuman AA, Rajakumar G, MarimuthuS Bagavan A, Jayaseelan C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702

    Article  Google Scholar 

  46. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrussinensis peel extract and its antibacterial activity. SpectrochemActa A Mol Biomol Spectrosc 79:594–598

    Article  CAS  Google Scholar 

  47. Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631

    Article  CAS  Google Scholar 

  48. Dubey SP, Lahtinen M, Sillianpaa M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1071

    Article  CAS  Google Scholar 

  49. Suna Q, Cai X, Li J, Zheng M, Chenb Z, Yu CP (2014) Greensynthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloid Surf A Physicochem Eng Aspects 444:226–231

    Article  CAS  Google Scholar 

  50. Gopinatha V, Ali MD, Priyadarshini S, Thajuddinb N, MeeraPriyadharsshini N, Velusamy P (2012) Biosynthesis of silvernanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloid Surf B Biointerface 96:69–74

    Article  CAS  Google Scholar 

  51. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006

    Article  CAS  Google Scholar 

  52. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 75:790–798

    Article  CAS  Google Scholar 

  53. Sui Z, Chen X, Wang L, Chai Y, Yang C, Zhao J (2005) An improved approach for synthesis of positively charged silver nanoparticles. ChemLett 34:100–101

    CAS  Google Scholar 

  54. Shi Y, Lv L, Wang H (2009) A facile approach to synthesize silver nanorods capped with sodium tripolyphosphate. Mater Lett 63:2698–2700

    Article  CAS  Google Scholar 

  55. Horiuchi Y, Shimada M, Kamegawa T, Mori K, Yamashita H (2009) Size-controlled synthesis of silver nanoparticles on Ti-containing mesoporous silica thin film and photoluminescence enhancement of rhodamine 6G dyes by surface plasmon resonance. J Mater Chem 19:6745–6749

    Article  CAS  Google Scholar 

  56. Zielinska A, Skwarek E, Zaleska A, Gazda M, Hupka J (2009) Preparation of silver nanoparticle. ProcChem 1:1560

    CAS  Google Scholar 

  57. Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles. Cappingaction of citrate. J Phys Chem B 103:9533–9539

    Article  CAS  Google Scholar 

  58. Pietrobon B, Kitaev V (2008) Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem Mater 20:5186–5190

    Article  CAS  Google Scholar 

  59. Mayer AB, Hausner SH, Mark JE (2002) Colloidal silver nanoparticles generated in the presence of protective cationic polyelectrolytes. Poly J 32:15–22

    Article  Google Scholar 

  60. Sivaraman SK, Elango I, Kumar S, Santhanam V (1997) Room-temperature synthesis of gold nanoparticles—size-control by slow addition. CurrSci 7:1055–1059

    Google Scholar 

  61. Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J PhysChem C 111:12839–12847

    CAS  Google Scholar 

  62. Chou KS, Lai YS (2004) Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids. Mater Chem Phys 83:82–88

    Article  CAS  Google Scholar 

  63. Chou KS, Lu YC, Lee HH (2005) Effect of alkaline ion on the mechanism and kinetics of chemical reduction of silver. Mater Chem Phys 94:429–433

    Article  CAS  Google Scholar 

  64. Chen SF, Zhang H (2012) Aggregation kinetics of nanosilver in different watercondition. Adv Nat Sci Nanosci Nanotechnol 3:035006-1–035006-7

    Article  CAS  Google Scholar 

  65. Dang TMD, Le TTT, Blance EF, Dang MC (2012) Influence of surfactant on the preparation of silvernanoparticles by polyol method. Adv Nat Sci Nanosci Nanotechnol 3:035004-1–035004-4

    Article  CAS  Google Scholar 

  66. Patil RS, Kokate MR, Jambhale C, Pawar SM, Han SH, Kolekar SS (2012) One-pot synthesis of PVA-capped silvernanoparticles their characterization and biomedicalapplication. Adv. Nat. Sci.: Nanosci Nanotechnol. 3:015013-1–015013-7

    Google Scholar 

  67. Zorn K, Giorgio S, Halwax E, Henry CR, Grönbeck H, Rupprechter G (2011) CO oxidation on technological Pd–Al2O3 catalysts: oxidation state and activity. J Phys Chem C 115:1103–1111

    Article  CAS  Google Scholar 

  68. Guzman J, Carrettin S, Fierro-Gonzalez JC, Hao YL, Gates BC, Corma A (2005) CO oxidation catalyzed by supported gold: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew Chem Int Ed 44:4778–4781

    Article  CAS  Google Scholar 

  69. Wang Y, Van de Vyver S, Sharma KK, Leshkov YR (2014) Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chem 16:719–726

    Article  CAS  Google Scholar 

  70. Liu T, Li B, Hao Y, Han F, Zhang L, Hu L (2015) A general method to diverse silver/mesoporous–metal–oxidenanocomposites with plasmon-enhanced photocatalytic activity. Appl Catal B 165:378–388

    Article  CAS  Google Scholar 

  71. Liu K, Bai Y, Zhang L, Yang Z, Fan Q, Zheng H, Yin Y, Gao C (2016) Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis 16:3675–3681

    CAS  Google Scholar 

  72. Dutta Choudhury S, Badugu R, Ray K, Lakowicz JR (2012) Silver–gold nanocomposite substrates for metal-enhanced fluorescence: ensemble and single-molecule spectroscopic studies. J Phys Chem C 116:5042–5048

    Article  CAS  Google Scholar 

  73. Li HJ, Zhang AQ, Hu Y, Sui L, Qian DJ, Chen M (2012) Large-scale synthesis and self-organization of silver nanoparticles with tween 80 as a reductant and stabilizer. Nanoscale Res Lett 7:612

    Article  CAS  Google Scholar 

  74. Vimala K, Yallapu MM, Varaprasad K, Reddy NN, Ravindra S, Naidu NS, Raju KM (2011) Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J Biomater Nanobiotechnol 2:55–64

    Article  CAS  Google Scholar 

  75. Porel S, Ramakrishna D, Hariprasad E, Gupta D, Radhakrishnan P (2011) Polymer thin film with in situ synthesized silver nanoparticles as a potent reusable bactericide. Curr Sci 101:927–934

    Google Scholar 

  76. Wankhade Y, Kondawar S, Thakare S, More P (2013) Synthesis and characterization of silver nanoparticles embedded in polyaniline nanocomposite. Adv Mater 4:89–93

    Google Scholar 

  77. Guo Q, Ghadiri R, Weigel T, Aumann A, Gurevich E, Esen C, Medenbach O, Cheng W, Chichkov B, Ostendorf A (2014) Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers 6:2037–2050

    Article  CAS  Google Scholar 

  78. Lim MH, Ast DG (2001) Free-standing thin films containing hexagonally organized silver nanocrystals in a polymer matrix. Adv Mater 13:718–721

    Article  CAS  Google Scholar 

  79. Mandi U, Roy AS, Banerjee B, Islam SM (2014) A novel silver nanoparticle embedded mesoporous polyaniline (mPANI/Ag) nanocomposite as a recyclable catalyst in the acylation of amines and alcohols under solvent free conditions. RSC Adv. 4:42670–42681

    Article  CAS  Google Scholar 

  80. Mandi U, Roy AS, Kundu SK, Roy S, Bhaumik A, Islam SM (2016) Mesoporouspolyacrylic acid supported silver nanoparticles as an efficient catalyst for reductive coupling of nitrobenzenes and alcohols using glycerol as hydrogen source. J Colloid Interface Sci 472:202–209

    Article  CAS  Google Scholar 

  81. Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná TJ, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    Article  CAS  Google Scholar 

  82. Kvitek L, Panáček A, Soukupova J, Kolář M, Večeřová R, Prucek R, Holecova M, Zbořil R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834

    Google Scholar 

  83. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Google Scholar 

  84. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  Google Scholar 

  85. Liu J, Li X, Zuo S, Yu Y (2007) Preparation and photocatalytic activity of silver and TiO2 nanoparticles/montmorillonite composites. Appl Clay Sci 37(3):275–280

    Article  CAS  Google Scholar 

  86. Shah MSAS, Nag M, Kalagara T, Singh S, Manorama SV (2008) Silver on PEG-PU-TiO2 polymer nanocomposite films: an excellent system for antibacterial applications. Chem Mater 20(7):2455–2460

    Article  CAS  Google Scholar 

  87. Kong H, Jang J (2008) Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24(5):2051–2056

    Article  CAS  Google Scholar 

  88. Lee EM, Lee HW, Park JH, Han YA, Ji BC, Oh W, Deng Y, Yeum JH (2008) Multihollow structured poly (methyl methacrylate)/silver nanocomposite microspheres prepared by suspension polymerization in the presence of dual dispersion agents. Colloid Polymer Sci 286(12):1379–1385

    Google Scholar 

  89. Nadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromol 8(9):2762–2767

    Article  CAS  Google Scholar 

  90. Kawahara K, Tsuruda K, Morishita M, Uchida M (2000) Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent Mater 16(6):452–455

    Article  CAS  Google Scholar 

  91. Casemiro LA, Martins CHG, Pires-de-Souza FDC, Panzeri H (2008) Antimicrobial and mechanical properties of acrylic resins with incorporated silver–zinc zeolite–part I. Gerodontology 25(3):187–194

    Article  Google Scholar 

  92. Matsuura T, Abe Y, Sato Y, Okamoto K, Ueshige M, Akagawa Y (1997) Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite. J Dent 25(5):373–377

    Article  CAS  Google Scholar 

  93. Morishita M, Miyagi M, Yamasaki Y, Tsuruda K, Kawahara K, Iwamoto Y (1998) Pilot study on the effect of a mouthrinse containing silver zeolite on plaque formation. J Clin Dent 9:94–96

    CAS  Google Scholar 

  94. Aroca RF, Goulet PJ, dos Santos DS, Alvarez-Puebla RA, Oliveira ON (2005) Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering. Anal Chem 77(2):378–382

    Article  CAS  Google Scholar 

  95. Lesniak W, Bielinska AU, Sun K, Janczak KW, Shi X, Baker JR, Balogh LP (2005) Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett 5(11):2123–2130

    Article  CAS  Google Scholar 

  96. Oh Y, Suh D, Kim Y, Lee E, Mok JS, Choi J, Baik S (2008) Silver-plated carbon nanotubes for silver/conducting polymer composites. Nanotechnology 19(49):495602

    Article  CAS  Google Scholar 

  97. Sur I, Cam D, Kahraman M, Baysal A, Culha M (2010) Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology 21(17):175104

    Article  CAS  Google Scholar 

  98. Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal Chim Acta 751:24–43

    Article  CAS  Google Scholar 

  99. Shin SH, Ye MK, Kim HS, Kang HS (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7(13):1813–1818

    Article  CAS  Google Scholar 

  100. Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2(1):129–136

    Article  CAS  Google Scholar 

  101. Wu J, Balasubramanian S, Kagan D, Manesh KM, Campuzano S, Wang J (2010) Motion-based DNA detection using catalytic nanomotors. Nat Comm 1:36

    Article  CAS  Google Scholar 

  102. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12

    Article  CAS  Google Scholar 

  103. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006

    Article  CAS  Google Scholar 

  104. Gupta A, Silver S (1998) Molecular genetics: silver as a biocide: will resistance become a problem? Nat Biotechnol 16(10):888

    Article  CAS  Google Scholar 

  105. Ghosh S, Azhahianambi P, de la Fuente J (2006) Control of ticks of ruminants, with special emphasis on livestock farming systems in India: present and future possibilities for integrated control—a review. Exp Appl Acarol 40(1):49–66

    Article  CAS  Google Scholar 

  106. Bergeson LL (2010) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manage 19(3):79–85

    Article  Google Scholar 

  107. Yan J, Huang K, Wang Y, Liu S (2005) Study on anti-pollution nano-preparation of dimethomorph and its performance. Chin Sci Bull 50(2):108–112

    Article  CAS  Google Scholar 

  108. Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62(3):373–380

    Article  CAS  Google Scholar 

  109. Wong DW, Camirand WM, Pavlath AE (1994) Development of edible coatings for minimally processed fruits and vegetables. Edible Coat Films Improve Food Qual 65–88

    Google Scholar 

  110. Han JH (2005) New technologies in food packaging: overview. Innov Food Packag 3–11

    Google Scholar 

  111. Mei Y, Zhao Y (2003) Barrier and mechanical properties of milk protein-based edible films containing nutraceuticals. J Agric Food Chem 51(7):1914–1918

    Article  CAS  Google Scholar 

  112. Labuza TP, Breene WM (1989) Applications of “active packaging” for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. J Food Process Preserv 13(1):1–69

    Article  CAS  Google Scholar 

  113. Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44(4):223–237

    Article  CAS  Google Scholar 

  114. Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Prot 67(4):833–848

    Article  CAS  Google Scholar 

  115. Rhim JW, Hong SI, Park HM, Ng PK (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54(16):5814–5822

    Article  CAS  Google Scholar 

  116. Hu Z, Chan WL, Szeto YS (2008) Nanocomposite of chitosan and silver oxide and its antibacterial property. J Appl Polym Sci 108(1):52–56

    Article  CAS  Google Scholar 

  117. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3(2):113–126

    Article  CAS  Google Scholar 

  118. Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114(2):547–552

    Google Scholar 

  119. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  Google Scholar 

  120. Simpson K (2003) Using silver to fight microbial attack. Plast Addit Compd 5(5):32–35

    Article  Google Scholar 

  121. Praus P, Turicová M, Machovič V, Študentová S, Klementová M (2010) Characterization of silver nanoparticles deposited on montmorillonite. Appl Clay Sci 49(3):341–345

    Article  CAS  Google Scholar 

  122. Coleman NJ, Bishop AH, Booth SE, Nicholson JW (2009) Ag+ and Zn2+ exchange kinetics and antimicrobial properties of 11Å tobermorites. J Eur Ceram Soc 29(6):1109–1117

    Google Scholar 

  123. Cowan MM, Abshire KZ, Houk SL, Evans SM (2003) Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J Ind Microbiol Biotechnol 30(2):102–106

    Article  CAS  Google Scholar 

  124. Galeano B, Korff E, Nicholson WL (2003) Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver-and zinc-containing zeolite formulation. Appl Environ Microbiol 69(7):4329–4331

    Google Scholar 

  125. Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278–4281

    Article  CAS  Google Scholar 

  126. Nakane T, Gomyo H, Sasaki I, Kimoto Y, Hanzawa N, Teshima Y, Namba T (2006) New antiaxillary odour deodorant made with antimicrobial Ag-zeolite (silver-exchanged zeolite). Int J Cosmet Sci 28(4):299–309

    Article  CAS  Google Scholar 

  127. Akdeniz Y, Ülkü S (2008) Thermal stability of Ag-exchanged clinoptilolite rich mineral. J Therm Anal Calorim 94(3):703–710

    Article  CAS  Google Scholar 

  128. Gulbranson SH, Hud JA, Hansen RC (2000) Argyria following the use of dietary supplements containing colloidal silver protein. Cutis 66(5):373–374

    CAS  Google Scholar 

  129. Romano P, Suzzi G (1993) Sulfur dioxide and wine microorganisms 373–393

    Google Scholar 

  130. Bakker J, Bridle P, Bellworthy SJ, Garcia-Viguera C, Reader HP, Watkins SJ (1998) Effect of sulphur dioxide and must extraction on colour, phenolic composition and sensory quality of red table wine. J Sci Food Agric 78(3):297–307

    Article  CAS  Google Scholar 

  131. Blaise A, Bertrand A (1998) Altérations organoleptiques des vins. Oenologie. Fondements Scientifique et Technologiques 1182–1216

    Google Scholar 

  132. Stratford M, Rose AH (1985) Hydrogen sulphhide production from sulphite by Saccharomyces cerevisiae. Microbiology 131(6):1417–1424

    Article  CAS  Google Scholar 

  133. Izquierdo-Cañas PM, García-Romero E, Huertas-Nebreda B, Gómez-Alonso S (2012) Colloidal silver complex as an alternative to sulphur dioxide in winemaking. Food Control 23(1):73–81

    Article  CAS  Google Scholar 

  134. Umadevi M, Christy AJ (2013) Optical, structural and morphological properties of silver nanoparticles and its influence on the photocatalytic activity of TiO2. Spectrochim Acta Part A Mol Biomol Spectrosc 111:80–85

    Article  CAS  Google Scholar 

  135. Chen D, Qiao X, Qiu X, Chen J (2009) Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. J Mater Sci 44(4):1076–1081

    Article  CAS  Google Scholar 

  136. Jiang H, Moon KS, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969–2973

    Google Scholar 

  137. Alshehri AH, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, Carey JD (2012) Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl Mater Interfaces 4(12):7007–7010

    Article  CAS  Google Scholar 

  138. Nam S, Cho HW, Lim S, Kim D, Kim H, Sung BJ (2012) Enhancement of electrical and thermomechanical properties of silver nanowire composites by the introduction of nonconductive nanoparticles: experiment and simulation. ACS Nano 7(1):851–856

    Article  CAS  Google Scholar 

  139. Yu YH, Ma CCM, Teng CC, Huang YL, Lee SH, Wang I, Wei MH (2012) Electrical, morphological, and electromagnetic interference shielding properties of silver nanowires and nanoparticles conductive composites. Mater Chem Phys 136(2):334–340

    Google Scholar 

  140. Lee J, Lee P, Lee HB, Hong S, Lee I, Yeo J, Lee SS, Kim TS, Lee D, Ko SH (2013) Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv Func Mater 23(34):4171–4176

    Article  CAS  Google Scholar 

  141. Chapman R, Mulvaney P (2001) Electro-optical shifts in silver nanoparticle films. Chem Phys Lett 349(5):358–362

    Article  CAS  Google Scholar 

  142. Wei H, Eilers H (2008) Electrical conductivity of thin-film composites containing silver nanoparticles embedded in a dielectric fluoropolymer matrix. Thin Solid Films 517(2):575–581

    Article  CAS  Google Scholar 

  143. Guo H, Tao S (2007) Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing. Sens Actuators B Chem 123(1):578–582

    Article  CAS  Google Scholar 

  144. Marques-Hueso J, Abargues R, Canet-Ferrer J, Valdes JL, Martinez-Pastor J (2010) Resist-based silver nanocomposites synthesized by lithographic methods. Microelectron Eng 87(5):1147–1149

    Article  CAS  Google Scholar 

  145. Ananth AN, Umapathy S, Sophia J, Mathavan T, Mangalaraj D (2011) On the optical and thermal properties of in situ/ex situ reduced Ag NP’s/PVA composites and its role as a simple SPR-based protein sensor. Appl Nanosci 1(2):87–96

    Article  CAS  Google Scholar 

  146. Ghosh S, Das AP (2015) Modified titanium oxide (TiO2) nanocomposites and its array of applications: a review. Toxicol Environ Chem 97(5):491–514

    Article  CAS  Google Scholar 

  147. Hutter E, Fendler JH, Roy D (2001) Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1, 6-hexanedithiol. J Phys Chem B 105(45):11159–11168

    Article  CAS  Google Scholar 

  148. Li X, Choy WCH, Lu H, Sha WE, Ho AHP (2013) Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv Func Mater 23(21):2728–2735

    Article  CAS  Google Scholar 

  149. Endo T, Yanagida Y, Hatsuzawa T (2008) Quantitative determination of hydrogen peroxide using polymer coated Ag nanoparticles. Measurement 41(9):1045–1053

    Article  Google Scholar 

  150. Pinto RJ, Marques PA, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5(6):2279–2289

    Article  CAS  Google Scholar 

  151. Vimala K, Mohan YM, Sivudu KS, Varaprasad K, Ravindra S, Reddy NN, Padma Y, Sreedhar B, MohanaRaju K (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf B 76(1):248–258

    Article  CAS  Google Scholar 

  152. Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–2976

    Article  CAS  Google Scholar 

  153. Hebeish A, Hashem M, El-Hady MA, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohyd Polym 92(1):407–413

    Article  CAS  Google Scholar 

  154. Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS, Momba MN (2012) Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int J Environ Res Pub Health 9(1):244–271

    Article  CAS  Google Scholar 

  155. Kim ES, Hwang G, El-Din MG, Liu Y (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J Membr Sci 394:37–48

    Article  CAS  Google Scholar 

  156. Kim DG, Kang H, Han S, Lee JC (2012) The increase of antifouling properties of ultrafiltration membrane coated by star-shaped polymers. J Mater Chem 22(17):8654–8661

    Article  CAS  Google Scholar 

  157. Taurozzi JS, Arul H, Bosak VZ, Burban AF, Voice TC, Bruening ML, Tarabara VV (2008) Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. J Membr Sci 325(1):58–68

    Article  CAS  Google Scholar 

  158. Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158(7):2335–2349

    Article  CAS  Google Scholar 

  159. DiGiano FA (2008) In pursuit of innovative membrane technology. In: IWA Membrane Research Conference. University of Massachusetts

    Google Scholar 

  160. Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331(1):50–56

    Article  CAS  Google Scholar 

  161. Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS (2010) Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan–silver nanoparticle composite. Langmuir 26(8):5901–5908

    Article  CAS  Google Scholar 

  162. Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology 18(28):285604

    Article  CAS  Google Scholar 

  163. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90(1):59–63

    Article  CAS  Google Scholar 

  164. Czajka R (2005) Development of medical textile market. Fibres Text Eastern Eur 13(1):13–15

    Google Scholar 

  165. Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705

    Article  CAS  Google Scholar 

  166. Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Coll Interface Sci 166(1):119–135

    Article  CAS  Google Scholar 

  167. Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7(3):236–241

    Article  CAS  Google Scholar 

  168. Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermatol

    Google Scholar 

  169. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32

    Article  Google Scholar 

  170. Gleiche M, Hoffschulz H, Lenhert S (2006) Nanotechnology in consumer products. Nanoforum Rep 1–30

    Google Scholar 

  171. Gajbhiye S, Sakharwade S (2016) Silver nanoparticles in cosmetics. J Cosmet Dermatol Sci Appl 6(1):48

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sk. Manirul Islam or Tanima Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazra Chowdhury, A., Debnath, R., Manirul Islam, S., Saha, T. (2019). Impact of Nanoparticle Shape, Size, and Properties of Silver Nanocomposites and Their Applications. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_37

Download citation

Publish with us

Policies and ethics