Skip to main content

Spark Plasma Sintering of High Entropy Alloys

  • Chapter
  • First Online:
Spark Plasma Sintering of Materials

Abstract

High Entropy Alloys (HEAs) are a fairly new class of alloys and, although there is still discussion concerning a definitive classification of what an HEA is, they are typically characterised as having five or more principal alloying elements each at a concentration of 5% or higher. HEAs are currently the focus of much research as they have the potential to deliver improved properties over more conventional alloys. Such properties usually include improved mechanical performance and enhanced high-temperature properties. However, achievement of better properties is very dependent on the processing routes used to produce HEA material. This contribution focusses on processing routes that exploit high –pressure, especially the Spark Plasma Sintering (SPS) method, and also a promising new subset of HEA materials, namely HEA composite alloys (HEACs). While this field is still at an early stage of development some trends are beginning to emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brif Y, Thomas M, Todd I (2015) The use of high-entropy alloys in additive manufacturing. Scr Mater 99:93–96

    Article  CAS  Google Scholar 

  • Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375-377:213–218

    Article  Google Scholar 

  • Chen W, Fu Z, Fang S, Wang Y, Xiao H, Zhu D (2013a) Processing, microstructure and properties of Al0.6CoNiFeTi0.4 high entropy alloy with nanoscale twins. Mater Sci Eng A 565:439–444

    Article  CAS  Google Scholar 

  • Chen W, Fu Z, Fang S, Xiao H, Zhu D (2013b) Alloying behaviour, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater Des 51:854–860

    Article  CAS  Google Scholar 

  • Chen Z, Chen W, Wu B, Cao X, Liu L, Fu Z (2015) Effects of Co and Ti on microstructure and mechanical behaviour of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater Sci Eng A 648:217–224

    Article  CAS  Google Scholar 

  • Chen H, Kauffmann A, Gorr B, Schliephake D, SeemĂ¼ller C, Wagner JN, Christ HJ, Heilmaier M (2016) Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al. J Alloys Compd 661:206–215

    Article  CAS  Google Scholar 

  • Eissman N, Klöden B, Weissgärber T, Kieback B (2017) High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall 60(3):184–197

    Article  Google Scholar 

  • Fang S, Chen W, Fu Z (2014) Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater Des 54:973–979

    Article  CAS  Google Scholar 

  • Fu Z, Chen W, Fang S, Zhang D, Xiao H, Zhu D (2013a) Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J Alloys Compd 553:316–323

    Article  CAS  Google Scholar 

  • Fu Z, Chen W, Xiao H, Zhou L, Zhu D, Yang S (2013b) Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique. Mater Des 44:535–539

    Article  CAS  Google Scholar 

  • Fu Z, Chen W, Chen Z, Wen H, Lavernia EJ (2014a) Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy. Mater Sci Eng A 619:137–145

    Article  CAS  Google Scholar 

  • Fu Z, Chen W, Fang S, Li X (2014b) Effect of Cr addition on the alloying behaviour, microstructure and mechanical properties of twinned CoFeNiAl0.5Ti0.5 alloy. Mater Sci Eng A 597:204–211

    Article  CAS  Google Scholar 

  • Fu Z, Chen W, Wen H, Chen Z, Lavernia EJ (2015a) Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J Alloys Compd 646:175–182

    Article  CAS  Google Scholar 

  • Fu Z, Chen W, Wen H, Morgan S, Chen F, Zheng B, Zhou Y, Zhang L, Lavernia EJ (2015b) Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering. Mater Sci Eng A 644:10–16

    Article  CAS  Google Scholar 

  • Fu Z, Chen W, Wen H, Zhang D, Chen Z, Zheng B, Zhou Y, Lavernia EJ (2016) Microstructure and strengthening mechanism in an fcc structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater 107:59–71

    Article  CAS  Google Scholar 

  • Ganji RS, Karthik PS, Sankara Rao KB, Rajulapati KV (2017) Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater 121:58–68

    Article  Google Scholar 

  • Ge W, Wang Y, Shang C, Zhang Z, Wang Y (2017) Microstructures and properties of equiatomic CuZr and CuZrAlTiNi bulk alloys fabricated by mechanical alloying and spark plasma sintering. J Mater Sci 52:5726–5737

    Article  CAS  Google Scholar 

  • German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J Mater Sci 44:1–39

    Article  CAS  Google Scholar 

  • Gild J, Zhang Y, Harrington T, Jiang S, Hu T, Quinn MC, Mellor WM, Zhou N, Vecchio K, Luo J (2016) High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep 6:37946

    Article  CAS  Google Scholar 

  • Gludovatz B, Hohenwarter A, Thurston KVS, Bei H, Wu Z, George EP, Ritchie RO (2016) Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun 7:10602

    Article  CAS  Google Scholar 

  • Hadraba H, Chlup Z, Dlouhy A, Dobes F, Roupcova P, Vilemova M, Matejicek J (2017) Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater Sci Eng A 689:252–256

    Article  CAS  Google Scholar 

  • Hemphill MA, Yuan T, Wang GY, Yeh JW, Tsai CW, Chuang A, Liaw PK (2012) Fatigue behaviour of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater 60(16):5723–5734

    Article  CAS  Google Scholar 

  • Ji W, Fu Z, Wang W, Wang H, Zhang J, Wang Y, Zhang F (2014) Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloys Compd 589:61–66

    Article  CAS  Google Scholar 

  • Ji W, Wang W, Wang H, Zhang J, Wang Y, Zhang F, Fu Z (2015a) Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56:24–27

    Article  CAS  Google Scholar 

  • Ji W, Zhang J, Wang W, Wang H, Zhang F, Wang Y, Fu Z (2015b) Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid. J Eur Ceram Soc 35:879–886

    Article  CAS  Google Scholar 

  • Kingery WD (1959) Densification during sintering in the presence of a liquid phase. I. Theory. J Appl Phys 30:301–306

    Article  CAS  Google Scholar 

  • Laplanche G, Kostka A, Horst OM, Eggeler G, George EP (2016) Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater 118:152–163

    Article  CAS  Google Scholar 

  • Liu B, Wang J, Chen J, Fang Q, Liu Y (2017a) Ultra-high strength TiC/refractory high-entropy-alloy composite prepared by powder metallurgy. JOM 69(4):651–656

    Article  CAS  Google Scholar 

  • Liu X, Zhang L, Xu Y (2017b) Microstructure and mechanical properties of graphene reinforced Fe50Mn30Co10Cr10 high-entropy alloy composites synthesized by MA and SPS. Appl Phys A Mater Sci Process 123:567

    Article  Google Scholar 

  • Maulik O, Kumar D, Kumar S, Fabijanic DM, Kumar V (2016) Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 77:46–56

    Article  CAS  Google Scholar 

  • Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511

    Article  CAS  Google Scholar 

  • Mohanty S, Gurao NP, Biswas K (2014) Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Mater Sci Eng A 617:211–218

    Article  CAS  Google Scholar 

  • Mohanty S, Samal S, Tazuddin A, Tiwary CS, Gurao NP, Biswas K (2015) Effect of processing route on phase stability in equiatomic multicomponent Ti20Fe20Ni20Co20Cu20 high entropy alloy. Mater Sci Tech 31(10):1214–1222

    Article  CAS  Google Scholar 

  • Mohanty S, Maity TN, Mukhopadhyay S, Sarkar S, Gurao NP, Bhowmick S, Biswas K (2017) Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties. Mater Sci Eng A 679:299–313

    Article  CAS  Google Scholar 

  • Moravcik I, Cizek J, Gavendova P, Sheikh S, Guo S, Dlouhy I (2016) Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0.5 high entropy alloy. Mater Lett 174:53–56

    Article  CAS  Google Scholar 

  • Moravcik I, Cizek J, Zapletal J, Kovacova Z, Vesely J, Minarik P, Kitzmantel M, Neubauer E, Dlouhy I (2017) Microstructure and mechanical properties of Ni1,5Co1,5CrFeTi0,5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering. Mater Des 119:141–150

    Article  CAS  Google Scholar 

  • Mridha S, Samal S, Khan PY, Biswas K, Bajargan G (2013) Processing and consolidation of nanocrystalline Cu-Zn-Ti-Fe-Cr high-entropy alloys via mechanical alloying. Metall Mater Trans A 44A:4532–4541

    Article  Google Scholar 

  • Muddle BC (1984) Interphase boundary precipitation in liquid phase sintered W-Ni-Fe and W-Ni-Cu alloys. Metall Trans A 15:1089–1098

    Article  Google Scholar 

  • Poulia A, Georgatis E, Lekatou A, Karantzalis AE (2016) Microstructure and wear behavior of a refractory high entropy alloy. Int J Refract Met Hard Mater 57:50–63

    Article  CAS  Google Scholar 

  • Praveen S, Murty BS, Kottada RS (2012) Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater Sci Eng A 534:83–89

    Article  CAS  Google Scholar 

  • Praveen S, Anupam A, Sirasani T, Murty BS, Kottada RS (2013a) Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering. Trans Indian Inst Metals 66(4):369–373

    Article  CAS  Google Scholar 

  • Praveen S, Murty BS, Kottada RV (2013b) Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM 65(12):1797–1804

    Article  CAS  Google Scholar 

  • Raphael A, Kumaran S, Kumar KV, Varghese L (2017) Oxidation and corrosion resistance of AlCoCrFeTi High Entropy Alloy. Mat Today Proc 4(2A):195–202

    Article  Google Scholar 

  • Riva S, Tudball A, Mehraban S, Lavery NP, Brown SGR, Yusenko KV (2018) A novel High-Entropy Alloy-based composite material. J Alloys Compd 730:544–551

    Article  CAS  Google Scholar 

  • Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF (2011) Micro-structure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd 509(20):6043–6048

    Article  CAS  Google Scholar 

  • Tan Z, Wang L, Xue Y, Zhang P, Cao T, Cheng X (2016) High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Mater Des 109:219–226

    Article  CAS  Google Scholar 

  • Tsai KY, Tsai MH, Yeh JW (2013) Sluggish diffusion in Co–Cr–Fe–Mn–Ni high- entropy alloys. Acta Mater 61(13):4887–4897

    Article  CAS  Google Scholar 

  • Tsau CH, Lee PY (2016) Microstructures of Al7.5Cr22.5Fe35Mn20Ni15 high-entropy alloy and its polarization behaviours in sulfuric acid, nitric acid and hydrochloric acid solutions. Entropy 18:288

    Article  Google Scholar 

  • Wang C, Ji W, Fu Z (2014) Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv Powder Technol 25(4):1334–1338

    Article  CAS  Google Scholar 

  • Wang B, Fu A, Huang X, Liu B, Liu Y, Li Z, Zan X (2016b) Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression. JMEPEG 25:2985–2992

    Article  CAS  Google Scholar 

  • Wang HL, Gao TX, Niu JZ, Shi PJ, Xu J, Wang Y (2016c) Microstructure, thermal properties, and corrosion behaviour of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering. Int J Min Metal Mater 23(1):77–82

    Article  CAS  Google Scholar 

  • Wang P, Cai H, Cheng X (2016a) Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2−x (x = 1.0, 1.2, 1.5, 1.8 mol) high entropy alloys. J Alloys Compd 662:20–31

    Article  CAS  Google Scholar 

  • Wang P, Cai H, Zhou S, Xu L (2017) Processing, microstructure and properties of Ni1.5CoCuFeCr0.5 xVx high entropy alloys with carbon introduced from process control agent. J Alloys Compd 695:462–475

    Article  CAS  Google Scholar 

  • Waseem OA, Ryu HJ (2017) Powder metallurgy processing of a WxTaTiVCr High-Entropy Alloy and its derivative alloys for fusion material applications. Sci Rep 7:1926

    Article  Google Scholar 

  • Yang S, Yan X, Yang K, Fu Z (2016) Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys. Vacuum 131:69–72

    Article  CAS  Google Scholar 

  • Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303

    Article  CAS  Google Scholar 

  • Yu DY, Zhang Y (2016) The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetall 70:24–28

    Article  Google Scholar 

  • Yusenko KV, Riva S, Carvalho PA, Yusenko MV, Arnaboldi S, Sukhikh AS, Hanfland M, Gromilov SA (2017) First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr Mater 138:22–27

    Article  CAS  Google Scholar 

  • Yusenko KV, Riva S, Crichton WA, Spektor K, Bykova E, Pakhomova A, Tudball A, Kupenko I, Rohrbach A, Klemme S, Mazzali F, Margadonna S, Lavery NP, Brown SGR (2018) High-pressure high-temperature tailoring of High Entropy Alloys for extreme environments. J Alloys Compd 738:491–500

    Article  CAS  Google Scholar 

  • Zhang KB, Fu ZY, Zhang JY, Wang WM, Lee SW, Niihara K (2010) Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J Alloys Compd 495(1):3–38

    Google Scholar 

  • Zhang Y, Yang X, Liaw PK (2012) Alloy design and properties optimization of high- entropy alloys. JOM 64(7):830–838

    Article  CAS  Google Scholar 

  • Zhang A, Han J, Meng J, Su B, Li P (2016) Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater Lett 181:82–85

    Article  CAS  Google Scholar 

  • Zhang A, Han J, Su B, Li P, Meng J (2017a) Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite. Mater Des 114:253–263

    Article  CAS  Google Scholar 

  • Zhang A, Han J, Su B, Meng J (2017b) A novel CoCrFeNi high entropy alloy matrix self-lubricating composite. J Alloys Compd 725:700–710

    Article  CAS  Google Scholar 

  • Zhao K, Niu B, Zhang F, Zhang J (2017) Microstructure and mechanical properties of spark plasma sintered TiB2 ceramics combined with a high-entropy alloy sintering aid. Adv Appl Ceram 116(1):19–23

    Article  CAS  Google Scholar 

  • Zheng ZY, Li XC, Zhang C, Li JC (2015) Microstructure and corrosion behaviour of the FeCoNiCuSnx high entropy alloys. Mater Sci Tech 31(10):1148–1152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Welsh Government and Higher Education Funding Council for Wales through the SĂªr Cymru National Research Network in Advanced Engineering and Materials and by the Materials Advanced Characterization Centre (MACH1) at Swansea University. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill V. Yusenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riva, S., Brown, S.G.R., Lavery, N.P., Tudball, A., Yusenko, K.V. (2019). Spark Plasma Sintering of High Entropy Alloys. In: Cavaliere, P. (eds) Spark Plasma Sintering of Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05327-7_18

Download citation

Publish with us

Policies and ethics