Skip to main content

Ant Antennae-Specific Niemann-Pick Type C2 Protein

  • Chapter
  • First Online:
Book cover Olfactory Concepts of Insect Control - Alternative to insecticides
  • 861 Accesses

Abstract

Ants are found in various ecological environments on the earth. To maintain the colony, worker ants have developed a highly sophisticated chemical communication system to detect semiochemicals, which convey information in a task-specific manner. Invasive ants cause economic damage and disrupt ecosystems. To control the ants, it is important to develop environmentally friendly regulatory methods based on the ants’ behaviors. Such methods could come from the analysis of the molecular basis of olfaction. In this chapter, I introduce discovery, characterization, structure, and phylogenetic analysis of a novel ant antenna-specific protein, the Niemann-Pick type C2 protein from the Japanese carpenter ant, Camponotus japonicus (CjapNPC2). This unique β-structure-rich molecule can be a promising molecular target to specifically disturb chemical communication among the invasive ants. Alternatively, this protein may be used for reverse chemical ecological approaches to identify synthetic semiochemicals as attractants or repellents toward these ants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi T, Ishii K, Matsumoto Y, Hayashi Y, Hamamoto H, Sekimizu K (2014) Niemann-Pick disease type C2 protein induces triglyceride accumulation in silkworm and mammalian cell lines. Biochem J 459:137–147

    Article  CAS  PubMed  Google Scholar 

  • Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P (1999) Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 262:745–754

    Article  CAS  PubMed  Google Scholar 

  • Ban L, Zhang L, Yan Y, Pelosi P (2002) Binding properties of a locust’s chemosensory protein. Biochem Biophys Res Commun 293:50–54

    Article  CAS  PubMed  Google Scholar 

  • Boulay R, Coll-Toledano J, Manzaneda AJ, Cerdá X (2007) Geographic variations in seed dispersal by ants: are plant and seed traits decisive? Naturwiss 94:242–246

    Article  CAS  PubMed  Google Scholar 

  • Briand L, Nespoulous C, Huet JC, Pernollet JC (2001) Disulfide pairing and secondary structure of ASP1, an olfactory-binding protein from honeybee (Apis mellifera L.). J Pept Res 58:540–545

    Article  CAS  PubMed  Google Scholar 

  • Cheruku SR, Xu Z, Dutia R, Lobel P, Storch J (2006) Mechanism of cholesterol transfer from the Niemann-Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J Biol Chem 281:31594–31604

    Article  CAS  PubMed  Google Scholar 

  • Damberger FF, Ishida Y, Leal WS, Wuthrich K (2007) Structural basis of ligand binding and release in insect pheromone-binding proteins: NMR structure of Antheraea polyphemus PBP1 at pH 4.5. J Mol Biol 373:811–819

    Article  CAS  PubMed  Google Scholar 

  • Damberger FF, Michel E, Ishida Y, Leal WS, Wüthrich K (2013) Pheromone discrimination by a pH-tuned polymorphism of the Bombyx mori pheromone-binding protein. Proc Natl Acad Sci U S A 110:18680–18685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedland N, Liou H-L, Lobel P, Stock AM (2003) Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc Natl Acad Sci U S A 100:2512–2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnatzy W, Mohren W, Steinbrecht RA (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi II. Morphometric analysis. Cell Tissue Res 235:35–42

    Article  CAS  PubMed  Google Scholar 

  • González D, Zhao Q, McMahan C, Velasquez D, Haskins WE, Sponsel V, Cassill A, Renthal R (2009) The major antennal chemosensory protein of red imported fire ant workers. Insect Mol Biol 18:395–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Gotzek D, Axen HJ, Suarez AV, Cahan SH, Shoemaker D (2015) Global invasion history of the tropical fire ant: a stowaway on the first global trade routes. Mol Ecol 24:374–388

    Article  PubMed  Google Scholar 

  • Hallem EA, Dahanukar A, Carlson JR (2006) Insect odor and taste receptors. Annu Rev Entomol 51:113–135

    Article  CAS  PubMed  Google Scholar 

  • Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA (2002) Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res 12:1357–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hojo MK, Ishii K, Sakura M, Yamaguchi K, Shigenobu S, Ozaki M (2015) Antennal RNA-sequencing analysis reveals evolutionary aspects of chemosensory proteins in the carpenter ant, Camponotus japonicus. Sci Rep 5:13541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hölldobler B, Carlin NF (1987) Anonymity and specificity in the chemical communication signals of social insects. J Com Physiol A 161:567–581

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belkanap Press of Harvard University Press, Cambridge, MA, p 746

    Book  Google Scholar 

  • Huang X, Warren JT, Buchanan J, Gilbert LI, Scott MP (2007) Drosophila Niemann-Pick Type C-2 genes control sterol homeostasis and steroid biosynthesis: a model of human neurodegenerative disease. Development 134:3733–3742

    Article  CAS  PubMed  Google Scholar 

  • Hughes L, Westoby M, Jurado E (1994) Convergence of elaiosomes and insect prey: evidence from ant foraging behaviour and fatty acid composition. Funct Ecol 8:358–365

    Article  Google Scholar 

  • Ishida Y, Leal WS (2005) Rapid inactivation of a moth pheromone. Proc Natl Acad Sci U S A 102:14075–14079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Chiang V, Leal WS (2002) Protein that makes sense in the Argentine ant. Naturwiss 89:505–507

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Tsuchiya W, Fujii T, Fujimoto Z, Miyazawa M, Ishibashi J, Matsuyama S, Ishikawa Y, Yamazaki T (2014) Niemann-Pick type C2 protein madiating chemical communication in the worker ant. Proc Natl Acad Sci U S A 111:3847–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katagiri N, Imai K, Yamashita O (2001) Multiple gene expression up-regulated by diapause hormone in developing ovaries of the silkworm, Bombyx mori. J Insect Biotechnol Sericol 70:113–120

    CAS  Google Scholar 

  • Keil TA (1984) Surface coats of pore tubules and olfactory sensory dendrites of a silkmoth revealed by cationic markers. Tissue Cell 16:705–717

    Article  CAS  PubMed  Google Scholar 

  • Krieger J, von Nickisch-Rosenegk E, Mameli M, Pelosi P, Breer H (1996) Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 26:297–307

    Article  CAS  PubMed  Google Scholar 

  • Lartigue A, Campanacci V, Roussel A, Larsson AM, Jones TA, Tegoni M, Cambillau C (2002) X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem 277:32094–32098

    Article  CAS  PubMed  Google Scholar 

  • Lautenschlager C, Leal WS, Clardy J (2007) Bombyx mori pheromone-binding protein binding nonpheromone ligands: implications for pheromone recognition. Structure 15:1148–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal WS (2003) Protein that make sense. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, London, pp 447–476

    Chapter  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Leal WS, Ishida Y (2008) GP-9s are ubiquitous proteins unlikely involved in olfactory mediation of social organization in the red imported fire ant, Solenopsis invicta. PLoS One 3:e3762

    Article  PubMed  PubMed Central  Google Scholar 

  • Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda JM (2005a) Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci U S A 102:5386–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal WS, Parra-Pedrazzoli AL, Kaissling KE, Morgan TI, Zalom FG, Pesak DJ, Dundulis EA, Burks CS, Higbee BS (2005b) Unusual pheromone chemistry in the navel orangeworm: novel sex attractants and a behavioral antagonist. Naturwiss 92:139–146

    Article  CAS  PubMed  Google Scholar 

  • Leal WS, Barbosa RMR, Xu W, Ishida Y, Syed Z, Latte N, Chen AM, Morgan TI, Cornel AJ, Furtado A (2008) Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS One 3:e3045

    Article  PubMed  PubMed Central  Google Scholar 

  • Leal WS, Ishida Y, Pelletier J, Xu W, Rayo J, Xu XZ, Ames JB (2009) Olfactory proteins mediating chemical communication in the navel orangeworm moth, Amyelois transitella. PLoS One 4:e7235

    Article  PubMed  PubMed Central  Google Scholar 

  • Liou HL, Dixit SS, Xu SJ, Tint GS, Stock AM, Lobel P (2006) NPC2, the protein deficient in Niemann-Pick C2 disease, consists of multiple glycoforms that bind a variety of sterols. J Biol Chem 281:36710–36723

    Article  CAS  PubMed  Google Scholar 

  • Meer RV (2012) Ant interactions with soil organisms and associated semiochemicals. J Chem Ecol 38:728–745

    Article  Google Scholar 

  • Nakanishi A, Nishino H, Watanabe H, Yokohari F, Nishikawa M (2009) Sex-specific antennal sensory system in the ant Camponotus japonicus: structure and distribution of sensilla on the flagellum. Cell Tissue Res 338:79–97

    Article  PubMed  Google Scholar 

  • Ozaki M, Ninomiya M, Kashihara Y, Morita H (1986) Destruction and reorganization of the receptor membrane in labellar chemosensory cells of the blowfly. J Gen Physiol 87:533–549

    Article  CAS  PubMed  Google Scholar 

  • Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Iovinella I, Felicioli A, Dani FR (2014) Soluble proteins of chemical communication: an overview across arthropods. Front Physiol 5:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. BioScience 50:53–65

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 7:143–151

    Article  CAS  PubMed  Google Scholar 

  • Schultz TR (2000) In search of ant ancestors. Proc Natl Acad Sci U S A 97:14028–14029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada I (1975) Chemical treatments of the labellar sugar receptor of the fleshfly. J Insect Physiol 21:1565–1574

    Article  CAS  PubMed  Google Scholar 

  • Silverman J, Brightwell RJ (2008) The argentine ant: challenges in managing an invasive unicolonial pest. Annu Rev Entomol 53:231–252

    Article  CAS  PubMed  Google Scholar 

  • Steinbrecht RA, Gnatzy W (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi: I. Reconstruction of the cellular organization of the sensilla trichodea. Cell Tissue Res 235:25–34

    Article  CAS  PubMed  Google Scholar 

  • Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332

    Article  CAS  PubMed  Google Scholar 

  • Tschinkel WR (2006) The fire ants. Belkanap Press of Harvard University Press, Cambridge, MA, p 730

    Google Scholar 

  • Vogt RG (2005) Molecular basis of pheromone detection in insects. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive insect physiology, biochemistry, pharmacology and molecular biology, vol 3, Endocrinology. Elsevier, London, pp 753–804

    Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG, Riddiford LM (1986) Pheromone reception: a kinetic equilibrium. In: Payne TL, Brich MC, Kennedy CEJ (eds) Mechanisms of insect olfaction. Clarendon Press, Oxford, pp 201–208

    Google Scholar 

  • Vogt RG, Kohne AC, Dubnau JT, Prestwich GD (1989) Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J Neurosci 9:3332–33346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt RG, Rybczynski R, Lerner MR (1991) Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparisons with other insect OBPs and their signal peptides. J Neurosci 11:2972–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorum H, Brodersen R, Kragh-Hansen U, Pedersen AO (1992) Solubility of long-chain fatty acids in phosphate buffer at pH 7.4. Biochim Biophys Acta 1126:135–142

    Article  CAS  PubMed  Google Scholar 

  • Wurm Y et al (2011) The genome of the fire ant Solenopsis invicta. Proc Natl Acad Sci U S A 108:5679–5684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Benoff B, Liou H-L, Lobel P, Stock AM (2007) Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J Biol Chem 282:23525–23531

    Article  CAS  PubMed  Google Scholar 

  • Yamashita O (1996) Diapause hormone of the silkworm, Bombyx mori: strucuture, gene expression and function. J Insect Physiol 42:669–679

    Article  CAS  Google Scholar 

  • Zhou JJ, Huang W, Zhang G-A, Pickett JA, Field LM (2004) “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327:117–129

    Article  CAS  PubMed  Google Scholar 

  • Zhou XF, Slone JD, Rokas A, Berger SL, Liebig J, Ray A, Reinberg D, Zwiebel LJ (2012) Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet 8:e1002930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Toshimasa Yamazaki and Dr. Mitsuhiro Miyazawa at the National Institute of Agrobiological Sciences (NIAS), and Dr. Victor Benno Meyer-Rochow at University of Oulu/Research Institute of Luminous Organisms in Hachijojima for valuable comments during manuscript preparation. This work was partly supported by the Global COE program for Global Center for Education and Research in Integrative Membrane Biology and JSPS KAKENHI Grant Number 23580070 (to YI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Ishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishida, Y. (2019). Ant Antennae-Specific Niemann-Pick Type C2 Protein. In: Picimbon, JF. (eds) Olfactory Concepts of Insect Control - Alternative to insecticides. Springer, Cham. https://doi.org/10.1007/978-3-030-05165-5_7

Download citation

Publish with us

Policies and ethics