Skip to main content

Wrinkled Hydrogel Formation by Interfacial Swelling on Thermoplastic Surfaces

  • Chapter
  • First Online:

Abstract

The development of simple strategies capable of simultaneously producing hydrophilic surfaces and controlled surface topography is rare in spite of their huge potential for a wide myriad of applications. Herein, we first summarize the different strategies to fabricate microstructured hydrogel surfaces and the different biological applications described in the literature. Then, we describe a procedure used to fabricate wrinkled structures in thermoplastics. We present a straightforward approach to form microwrinkled surfaces on polycarbonate (PC) film after a process that involves three different steps: first, the contact between a photosensitive monomer mixture based on vinylpyrrolidone (VP) and the PC substrate; second, a UV-curing step of this solution; and third, the hydrogel detachment as a result of the swelling in ethanol. Several parameters allow us to vary the wrinkle characteristics including the contact time between the PC surface and the photopolymerizable solution prior to the UV-vis irradiation, the type of solvent, as well as the cross-linking degree. By contact angle measurements and by confocal Raman microscopy, we were able to demonstrate that the PC wrinkled surface produced after hydrogel detachment has a thin hydrogel layer. Thus the hydrogel presented an internal rupture close to the PC substrate. Finally, we evaluated biocompatibility analyzing cell proliferation, cell morphology, and cell detachment on the substrates with both variable chemical composition and wrinkle size and period.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.-M. Chen, S. Yang, Wrinkling instabilities in polymer films and their applications. Polym. Int. 61(7), 1041–1047 (2012)

    Article  CAS  Google Scholar 

  2. A. Schweikart, A. Fery, Controlled wrinkling as a novel method for the fabrication of patterned surfaces. Microchim. Acta 165(3–4), 249–263 (2009)

    Article  CAS  Google Scholar 

  3. J. Genzer, J. Groenewold, Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2(4), 310–323 (2006)

    Article  CAS  Google Scholar 

  4. S. McCormick, Materials science – Exploiting wrinkle formation. Science 317(5838), 605–606 (2007)

    Article  CAS  Google Scholar 

  5. F. Weiss, S. Cai, Y. Hu, M.K. Kang, R. Huang, Z. Suo, Creases and wrinkles on the surface of a swollen gel. J. Appl. Phys. 114(7), 073507 (2013)

    Article  CAS  Google Scholar 

  6. S. Cai, D. Chen, Z. Suo, R.C. Hayward, Creasing instability of elastomer films. Soft Matter 8(5), 1301–1304 (2012)

    Article  Google Scholar 

  7. S.S. Velankar, V. Lai, R.A. Vaia, Swelling-induced delamination causes folding of surface-tethered polymer gels. ACS Appl. Mater. Interfaces 4(1), 24–29 (2012)

    Article  CAS  Google Scholar 

  8. T. Bahners, L. Prager, S. Kriehn, J.S. Gutmann, Super-hydrophilic surfaces by photo-induced micro-folding. Appl. Surf. Sci. 259, 847–852 (2012)

    Article  CAS  Google Scholar 

  9. Y.-P. Cao, B. Li, X.-Q. Feng, Surface wrinkling and folding of core-shell soft cylinders. Soft Matter 8(2), 556–562 (2012)

    Article  CAS  Google Scholar 

  10. R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, M.R. Buchmeiser, VUV-induced micro-folding of acrylate-based coatings. 1. Real-time methods for the determination of the micro-folding kinetics. Surf. Coat. Technol. 203(13), 1844–1849 (2009)

    Article  CAS  Google Scholar 

  11. D.P. Holmes, A.J. Crosby, Draping films: A wrinkle to fold transition. Phys. Rev. Lett. 105(3), 038303 (2010)

    Article  CAS  Google Scholar 

  12. J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015)

    Article  CAS  Google Scholar 

  13. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nested self-similar wrinkling patterns in skins. Nat. Mater. 4(4), 293 (2005)

    Article  CAS  Google Scholar 

  14. T. Ohzono, M. Shimomura, Ordering of microwrinkle patterns by compressive strain. Phys. Rev. B 69(13), 132202 (2004)

    Article  CAS  Google Scholar 

  15. T. Ohzono, M. Shimomura, Geometry-dependent stripe rearrangement processes induced by strain on preordered microwrinkle patterns. Langmuir 21(16), 7230–7237 (2005)

    Article  CAS  Google Scholar 

  16. W.M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y.Y. Huang, J.A. Rogers, Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7(6), 1655–1663 (2007)

    Article  CAS  Google Scholar 

  17. H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, J.A. Rogers, Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. 104(40), 15607–15612 (2007)

    Article  CAS  Google Scholar 

  18. N. Uchida, T. Ohzono, Orientational ordering of buckling-induced microwrinkles on soft substrates. Soft Matter 6(22), 5729–5735 (2010)

    Article  CAS  Google Scholar 

  19. P.J. Yoo, Fabrication of complexly patterned wavy structures using self-organized anisotropic wrinkling. Electron. Mater. Lett. 7(1), 17–23 (2011)

    Article  CAS  Google Scholar 

  20. N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393(6681), 146 (1998)

    Article  CAS  Google Scholar 

  21. J. Kim, H.H. Lee, Wave formation by heating in thin metal film on an elastomer. J. Polym. Sci. B Polym. Phys. 39(11), 1122–1128 (2001)

    Article  CAS  Google Scholar 

  22. P.J. Yoo, H.H. Lee, Complex pattern formation by adhesion-controlled anisotropic wrinkling. Langmuir 24(13), 6897–6902 (2008)

    Article  CAS  Google Scholar 

  23. T. Okayasu, H.L. Zhang, D.G. Bucknall, G.A.D. Briggs, Spontaneous formation of ordered lateral patterns in polymer thin-film structures. Adv. Funct. Mater. 14(11), 1081–1088 (2004)

    Article  CAS  Google Scholar 

  24. J.Y. Chung, A.J. Nolte, C.M. Stafford, Diffusion-controlled, self-organized growth of symmetric wrinkling patterns. Adv. Mater. 21(13), 1358–1362 (2009)

    Article  CAS  Google Scholar 

  25. H. Vandeparre, S. Gabriele, F. Brau, C. Gay, K.K. Parker, P. Damman, Hierarchical wrinkling patterns. Soft Matter 6(22), 5751–5756 (2010)

    Article  CAS  Google Scholar 

  26. S.K. Basu, A.V. McCormick, L. Scriven, Stress generation by solvent absorption and wrinkling of a cross-linked coating atop a viscous or elastic base. Langmuir 22(13), 5916–5924 (2006)

    Article  CAS  Google Scholar 

  27. D. Breid, A.J. Crosby, Surface wrinkling behavior of finite circular plates. Soft Matter 5(2), 425–431 (2009)

    Article  CAS  Google Scholar 

  28. M. Guvendiren, J.A. Burdick, S. Yang, Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient. Soft Matter 6(9), 2044–2049 (2010)

    Article  CAS  Google Scholar 

  29. J. Huang, M. Juszkiewicz, W.H. De Jeu, E. Cerda, T. Emrick, N. Menon, T.P. Russell, Capillary wrinkling of floating thin polymer films. Science 317(5838), 650–653 (2007)

    Article  CAS  Google Scholar 

  30. D. Vella, M. Adda-Bedia, E. Cerda, Capillary wrinkling of elastic membranes. Soft Matter 6(22), 5778–5782 (2010)

    Article  CAS  Google Scholar 

  31. O. Wichterle, D. Lim, Hydrophilic gels for biological use. Nature 185(4706), 117 (1960)

    Article  Google Scholar 

  32. F. Ullah, M.B.H. Othman, F. Javed, Z. Ahmad, H.M. Akil, Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C 57, 414–433 (2015)

    Article  CAS  Google Scholar 

  33. K. Varaprasad, G.M. Raghavendra, T. Jayaramudu, M.M. Yallapu, R. Sadiku, A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C 79, 958–971 (2017)

    Article  CAS  Google Scholar 

  34. W. Roorda, H. Bodde, A. De Boer, H. Junginger, Synthetic hydrogels as drug delivery systems. Pharm. Weekbl. 8(3), 165–189 (1986)

    CAS  Google Scholar 

  35. S.J. Buwalda, K.W. Boere, P.J. Dijkstra, J. Feijen, T. Vermonden, W.E. Hennink, Hydrogels in a historical perspective: From simple networks to smart materials. J. Control. Release 190, 254–273 (2014)

    Article  CAS  Google Scholar 

  36. E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6(2), 105–121 (2015)

    Article  CAS  Google Scholar 

  37. W.A. Laftah, S. Hashim, A.N. Ibrahim, Polymer hydrogels: A review. Polym.-Plast. Technol. Eng. 50(14), 1475–1486 (2011)

    Article  CAS  Google Scholar 

  38. G.M. Raghavendra, K.Varaprasad, T. Jayaramudu, Biomaterials: Design, Development and Biomedical Applications, Nanotechnology Applications for Tissue Engineering. (Elsevier, Oxford, 2015), pp. 21–44

    Chapter  Google Scholar 

  39. K. Sharma, B. Kaith, V. Kumar, S. Kalia, V. Kumar, H. Swart, Water retention and dye adsorption behavior of Gg-cl-poly (acrylic acid-aniline) based conductive hydrogels. Geoderma 232, 45–55 (2014)

    Article  CAS  Google Scholar 

  40. S. Ma, B. Yu, X. Pei, F. Zhou, Structural hydrogels. Polymer 98, 516–535 (2016)

    Article  CAS  Google Scholar 

  41. B.R. Saunders, B. Vincent, Microgel particles as model colloids: Theory, properties and applications. Adv. Colloid Interf. Sci. 80(1), 1–25 (1999)

    Article  CAS  Google Scholar 

  42. P. Bradna, P. Stern, O. Quadrat, J. Snuparek, Thickening effect of dispersions of ethyl acrylate-methacrylic acid copolymer prepared by different polymerization routes. Colloid Polym. Sci. 273(4), 324–330 (1995)

    Article  CAS  Google Scholar 

  43. L.A. Lyon, Z. Meng, N. Singh, C.D. Sorrell, A.S. John, Thermoresponsive microgel-based materials. Chem. Soc. Rev. 38(4), 865–874 (2009)

    Article  CAS  Google Scholar 

  44. C.M. Nolan, M.J. Serpe, L.A. Lyon, Thermally modulated insulin release from microgel thin films. Biomacromolecules 5(5), 1940–1946 (2004)

    Article  CAS  Google Scholar 

  45. J. Kim, M.J. Serpe, L.A. Lyon, Hydrogel microparticles as dynamically tunable microlenses. J. Am. Chem. Soc. 126(31), 9512–9513 (2004)

    Article  CAS  Google Scholar 

  46. K. Ishii, Synthesis of microgels and their application to coatings. Colloids Surf. A Physicochem. Eng. Asp. 153(1–3), 591–595 (1999)

    Article  CAS  Google Scholar 

  47. L. Ionov, Biomimetic hydrogel-based actuating systems. Adv. Funct. Mater. 23(36), 4555–4570 (2013)

    Article  CAS  Google Scholar 

  48. S. Ma, M. Scaraggi, D. Wang, X. Wang, Y. Liang, W. Liu, D. Dini, F. Zhou, Nanoporous substrate-infiltrated hydrogels: A bioinspired regenerable surface for high load bearing and tunable friction. Adv. Funct. Mater. 25(47), 7366–7374 (2015)

    Article  CAS  Google Scholar 

  49. L. Binan, A. Ajji, G. De Crescenzo, M. Jolicoeur, Approaches for neural tissue regeneration. Stem Cell Rev. Rep. 10(1), 44–59 (2014)

    Article  CAS  Google Scholar 

  50. A.E. Haggerty, M. Oudega, Biomaterials for spinal cord repair. Neurosci. Bull. 29(4), 445–459 (2013)

    Article  CAS  Google Scholar 

  51. N. Bassik, B.T. Abebe, K.E. Laflin, D.H. Gracias, Photolithographically patterned smart hydrogel based bilayer actuators. Polymer 51(26), 6093–6098 (2010)

    Article  CAS  Google Scholar 

  52. P. Gruner, M. Arlt, T. Fuhrmann-Lieker, Surface wrinkling induced by photofluidization of low molecular azo glasses. ChemPhysChem 14(2), 424–430 (2013)

    Article  CAS  Google Scholar 

  53. N. Lambricht, T. Pardoen, S. Yunus, Giant stretchability of thin gold films on rough elastomeric substrates. Acta Mater. 61(2), 540–547 (2013)

    Article  CAS  Google Scholar 

  54. M. Ramanathan, B.S. Lokitz, J.M. Messman, C.M. Stafford, S.M. Kilbey II, Spontaneous wrinkling in azlactone-based functional polymer thin films in 2D and 3D geometries for guided nanopatterning. J. Mater. Chem. C 1(11), 2097–2101 (2013)

    Article  CAS  Google Scholar 

  55. Z. Wu, N. Bouklas, R. Huang, Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction. Int. J. Solids Struct. 50(3–4), 578–587 (2013)

    Article  CAS  Google Scholar 

  56. Z. Chen, Y.Y. Kim, S. Krishnaswamy, Anisotropic wrinkle formation on shape memory polymer substrates. J. Appl. Phys. 112(12), 124319 (2012)

    Article  CAS  Google Scholar 

  57. Y.-C. Chen, A.J. Crosby, Wrinkling of inhomogeneously strained thin polymer films. Soft Matter 9(1), 43–47 (2013)

    Article  CAS  Google Scholar 

  58. J. Dervaux, M.B. Amar, Mechanical instabilities of gels. Annu. Rev. Condens. Matter Phys. 3(1), 311–332 (2012)

    Article  CAS  Google Scholar 

  59. C.M. Chen, S. Yang, Wrinkling instabilities in polymer films and their applications. Polym. Int. 61(7), 1041–1047 (2012)

    Article  CAS  Google Scholar 

  60. B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter 8(21), 5728–5745 (2012)

    Article  CAS  Google Scholar 

  61. J. Gu, X. Li, H. Ma, Y. Guan, Y. Zhang, One-step synthesis of PHEMA hydrogel films capable of generating highly ordered wrinkling patterns. Polymer 110, 114–123 (2017)

    Article  CAS  Google Scholar 

  62. M. Guvendiren, S. Yang, J.A. Burdick, Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv. Funct. Mater. 19(19), 3038–3045 (2009)

    Article  CAS  Google Scholar 

  63. C.M. González-Henríquez, D.H. Sagredo-Oyarce, M.A. Sarabia-Vallejos, J. Rodríguez-Hernández, Fabrication of micro and sub-micrometer wrinkled hydrogel surfaces through thermal and photocrosslinking processes. Polymer 101, 24–33 (2016)

    Article  CAS  Google Scholar 

  64. M. Guvendiren, J.A. Burdick, The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31(25), 6511–6518 (2010)

    Article  CAS  Google Scholar 

  65. M. Guvendiren, S. Yang, J.A. Burdick, Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv. Funct. Mater. 19(19), 3038–3045 (2009)

    Article  CAS  Google Scholar 

  66. C. Tang, B. Li, C. Zou, L. Liu, H. Chen, Voltage-induced wrinkle performance in a hydrogel by dielectric elastomer actuation. Polymer 10(7), 697 (2018)

    Article  CAS  Google Scholar 

  67. A. Parfitt, Age-related structural changes in trabecular and cortical bone: Cellular mechanisms and biomechanical consequences. Calcif. Tissue Int. 36(1), S123–S128 (1984)

    Article  Google Scholar 

  68. V.I. Sikavitsas, J.S. Temenoff, A.G. Mikos, Biomaterials and bone mechanotransduction. Biomaterials 22(19), 2581–2593 (2001)

    Article  CAS  Google Scholar 

  69. F. Greqoir, C. Smas, H. Sul, Understanding adipocyte differentiation. Physiol. Rev. 78, 783–809 (1998)

    Article  Google Scholar 

  70. A.E. Grigoriadis, J. Heersche, J.E. Aubin, Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: Effect of dexamethasone. J. Cell Biol. 106(6), 2139–2151 (1988)

    Article  CAS  Google Scholar 

  71. J. Fukuda, Y. Sakai, K. Nakazawa, Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Biomaterials 27(7), 1061–1070 (2006)

    Article  CAS  Google Scholar 

  72. S.F. Wong, D.Y. No, Y.Y. Choi, D.S. Kim, B.G. Chung, S.-H. Lee, Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model. Biomaterials 32(32), 8087–8096 (2011)

    Article  CAS  Google Scholar 

  73. J.C. Mohr, J.J. de Pablo, S.P. Palecek, 3-D microwell culture of human embryonic stem cells. Biomaterials 27(36), 6032–6042 (2006)

    Article  CAS  Google Scholar 

  74. J. Fukuda, A. Khademhosseini, Y. Yeo, X. Yang, J. Yeh, G. Eng, J. Blumling, C.-F. Wang, D.S. Kohane, R. Langer, Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 27(30), 5259–5267 (2006)

    Article  CAS  Google Scholar 

  75. H. Tekin, M. Anaya, M.D. Brigham, C. Nauman, R. Langer, A. Khademhosseini, Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab Chip 10(18), 2411–2418 (2010)

    Article  CAS  Google Scholar 

  76. K.H. Lee, D.Y. No, S.-H. Kim, J.H. Ryoo, S.F. Wong, S.-H. Lee, Diffusion-mediated in situalginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane. Lab Chip 11(6), 1168–1173 (2011)

    Article  CAS  Google Scholar 

  77. Y.-S. Hwang, B.G. Chung, D. Ortmann, N. Hattori, H.-C. Moeller, A. Khademhosseini, Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. 106(40), 16978–16983 (2009)

    Article  CAS  Google Scholar 

  78. J.M. Karp, J. Yeh, G. Eng, J. Fukuda, J. Blumling, K.-Y. Suh, J. Cheng, A. Mahdavi, J. Borenstein, R. Langer, A. Khademhosseini, Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7(6), 786–794 (2007)

    Article  CAS  Google Scholar 

  79. J. Park, C.H. Cho, N. Parashurama, Y. Li, F. Berthiaume, M. Toner, A.W. Tilles, M.L. Yarmush, Microfabrication-based modulation of embryonic stem cell differentiation. Lab Chip 7(8), 1018–1028 (2007)

    Article  CAS  Google Scholar 

  80. M.D. Ungrin, C. Joshi, A. Nica, C. Bauwens, P.W. Zandstra, Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS One 3(2), e1565 (2008)

    Article  CAS  Google Scholar 

  81. H.-C. Moeller, M.K. Mian, S. Shrivastava, B.G. Chung, A. Khademhosseini, A microwell array system for stem cell culture. Biomaterials 29(6), 752–763 (2008)

    Article  CAS  Google Scholar 

  82. A.P. Napolitano, P. Chai, D.M. Dean, J.R. Morgan, Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng. 13(8), 2087–2094 (2007)

    Article  CAS  Google Scholar 

  83. A.B. Bernard, C.-C. Lin, K.S. Anseth, A microwell cell culture platform for the aggregation of pancreatic β-cells. Tissue Eng. Part C Methods 18(8), 583–592 (2012)

    Article  CAS  Google Scholar 

  84. B.R. Lee, J.W. Hwang, Y.Y. Choi, S.F. Wong, Y.H. Hwang, D.Y. Lee, S.-H. Lee, In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Biomaterials 33(3), 837–845 (2012)

    Article  CAS  Google Scholar 

  85. J. Dahlmann, G. Kensah, H. Kempf, D. Skvorc, A. Gawol, D.A. Elliott, G. Dräger, R. Zweigerdt, U. Martin, I. Gruh, The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials 34(10), 2463–2471 (2013)

    Article  CAS  Google Scholar 

  86. Z. Zhao, J. Gu, Y. Zhao, Y. Guan, X. Zhu, Y. Zhang, Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids. Biomacromolecules 15(9), 3306–3312 (2014)

    Article  CAS  Google Scholar 

  87. A. Ivascu, M. Kubbies, Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J. Biomol. Screen. 11(8), 922–932 (2006)

    Article  CAS  Google Scholar 

  88. I. Aranaz, E. Martinez-Campos, M.E. Nash, M.G. Tardajos, H. Reinecke, C. Elvira, V. Ramos, J.L. Lopez-Lacomba, A. Gallardo, Pseudo-double network hydrogels with unique properties as supports for cell manipulation. J. Mater. Chem. B 2(24), 3839–3848 (2014)

    Article  CAS  Google Scholar 

  89. A. Gallardo, N. Lujan, H. Reinecke, C. García, A.D. Campo, J. Rodriguez-Hernandez, Chemical and topographical modification of polycarbonate surfaces through diffusion/photocuring processes of hydrogel precursors based on vinylpyrrolidone. Langmuir 33(7), 1614–1622 (2017)

    Article  CAS  Google Scholar 

  90. H. Yuk, T. Zhang, S. Lin, G.A. Parada, X. Zhao, Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15(2), 190–196 (2016)

    Article  CAS  Google Scholar 

  91. X. Zhu, P. Lu, W. Chen, J. Dong, Studies of UV crosslinked poly(N-vinylpyrrolidone) hydrogels by FTIR, Raman and solid-state NMR spectroscopies. Polymer 51(14), 3054–3063 (2010)

    Article  CAS  Google Scholar 

  92. M. Luo, Y. Hong, W. Yao, C. Huang, Q. Xu, Q. Wu, Facile removal of polyvinylpyrrolidone (PVP) adsorbates from Pt alloy nanoparticles. J. Mater. Chem. A 3(6), 2770–2775 (2015)

    Article  CAS  Google Scholar 

  93. K. Bruckmoser, K. Resch, T. Kisslinger, T. Lucyshyn, Measurement of interdiffusion in polymeric materials by applying Raman spectroscopy. Polym. Test. 46, 122–133 (2015)

    Article  CAS  Google Scholar 

  94. E. Martinez-Campos, A. Gallardo, N. Lujan, A. Santos-Coquillat, H. Reinecke, A.D. Campo, J. Rodriguez-Hernandez, Wrinkled hydrogel surfaces with modulated surface chemistry and topography: Evaluation as supports for cell growth and transplant. Submitted to ACS Appl. Biomater. (2018)

    Google Scholar 

  95. A. Gallardo, E. Martínez-Campos, C. García, A.L. Cortajarena, J. Rodríguez-Hernández, Hydrogels with modulated ionic load for mammalian cell harvesting with reduced bacterial adhesion. Biomacromolecules 18(5), 1521–1531 (2017)

    Article  CAS  Google Scholar 

  96. K. Nagase, M. Yamato, H. Kanazawa, T. Okano, Poly (N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 153, 27–48 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the Consejo Superior de Investigaciones Científicas (CSIC). Equally, this work was financially supported by the Ministerio de Economía y Competitividad (MINECO) through MAT2013-47902-C2-1-R, MAT2013-42957-R, and MAT2016-78437-R, FEDER-EU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alberto Gallardo or Juan Rodríguez-Hernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinez, E. et al. (2019). Wrinkled Hydrogel Formation by Interfacial Swelling on Thermoplastic Surfaces. In: González-Henríquez, C., Rodríguez-Hernández, J. (eds) Wrinkled Polymer Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-030-05123-5_5

Download citation

Publish with us

Policies and ethics