Skip to main content

Antibiotic Usage in Poultry Production and Antimicrobial-Resistant Salmonella in Poultry

  • Chapter
  • First Online:

Part of the book series: Food Microbiology and Food Safety ((PRACT))

Abstract

“Post-antibiotic era” is not an imaginary word anymore and seems to be a real possibility with increased number of bacterial pathogens being reported as multidrug resistant (MDR). Indiscriminate use of antimicrobials in food animals for growth promotion and disease prevention is considered the key driver behind this surge. Increased demand and global acceptability of chicken meat over beef and pork have resulted in rearing of poultry birds in high-density farms, which are often overcrowded. In such farms, sub-therapeutic doses of antibiotics are routinely administered to prevent bacterial infections and to compensate the lack of adequate hygienic conditions. In many parts of the world, “medically important” antibiotics such as fluoroquinolones and cephalosporins constitute the “sub-therapeutic” regimen administered to poultry. Low-dose feeding of antibiotics results in the development of antimicrobial resistant (AMR) pathogens and presents a true risk of such pathogens entering the human food chain either through meat, manure, humans, or water. Transmission of antimicrobial resistance genes (ARGs) to the environment and eventually humans further aggravates the situation. Increased prevalence of antimicrobial-resistant Salmonella poses a severe risk to human health. Higher prevalence of Salmonella associated with chicken meat has been well-documented, and this prevalence has immense human health implications. Multistate outbreaks of Salmonella associated with the consumption of contaminated chicken meat have been reported. Misuse of antimicrobials in the poultry farms contributes to the increased Salmonella prevalence in poultry and poultry products. A One Health approach which includes judicious and unbiased antibiotic prescription in humans, regulated antibiotic use in food animals, and monitoring of antibiotic resistance in environmental reservoirs is needed to counter the threat of AMR in foodborne pathogens. Most countries have regulatory procedures in place for antibiotic usage in farms, but the extent to which it is applied varies markedly among countries. Awareness within countries on the adverse effects of misuse of antimicrobials in food animal production varies from good to negligible. Alternative approaches to control AMR such as improved management practices, wider use of vaccines, and introduction of probiotics are envisaged. However, while there is still a lack of consensus on the contribution of antibiotic usage in food animals to the development of AMR, epidemiological and molecular studies point to a relationship between antimicrobial use and the emergence of resistant bacterial strains in animals, and their spread to humans, via the food chain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarestrup, F. M. (2015). The livestock reservoir for antimicrobial resistance: A personal view on changing patterns of risks, effects of interventions and the way forward. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1670), 20140085.

    Article  Google Scholar 

  • Accogli, M., Fortini, D., Giufrè, M., Graziani, C., Dolejska, M., Carattoli, A., et al. (2013). IncI1 plasmids associated with the spread of CMY-2, CTX-M-1 and SHV-12 in Escherichia coli of animal and human origin. Clinical Microbiology and Infection, 19(5), E238.

    Article  CAS  PubMed  Google Scholar 

  • Aguirre, E. (2017). Contagion without relief: Democratic experimentalism and regulating the use of antibiotics in food-producing animals. UCLA Law Review, 64, 550.

    Google Scholar 

  • Alekshun, M. N., & Levy, S. B. (2007). Molecular mechanisms of antibacterial multidrug resistance. Cell, 128(6), 1037–1050.

    Article  CAS  PubMed  Google Scholar 

  • Belanger, A. (2015). A holistic solution for antibiotic resistance: Phasing out factory farms in order to protect human health. Journal of Health & Biomedical Law, 11, 145.

    Google Scholar 

  • Berendsen, B. J., Wegh, R. S., Memelink, J., Zuidema, T., & Stolker, L. A. (2015). The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta, 132, 258–268.

    Article  CAS  PubMed  Google Scholar 

  • Bhushan, C., Khurana, A., Sinha, R., & Nagaraju, M. (2017). Antibiotic resistance in poultry environment: Spread of resistance from poultry farm to agricultural field. New Delhi, India: Centre for Science and Environment.

    Google Scholar 

  • Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–49.

    Article  CAS  PubMed  Google Scholar 

  • Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., et al. (2009). Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 48(1), 1–12.

    Article  PubMed  Google Scholar 

  • Branswell, H. (2017). Woman killed by a superbug resistant to every available antibiotic. Retrieved March 2018, from https://www.scientificamerican.com/article/woman-killed-by-a-superbug-resistant-to-every-available-antibiotic/

  • Brooks C. (2011). Meat’s environmental impact. Stanford Woods: Institute for the Environment. Retrieved March 2018, from https://woods.stanford.edu/news-events/news/meats-environmental-impact

  • Brower, C. H., Mandal, S., Hayer, S., Sran, M., Zehra, A., Patel, S. J., et al. (2017). The prevalence of extended-spectrum beta-lactamase-producing multidrug-resistant Escherichia coli in poultry chickens and variation according to farming practices in Punjab, India. Environmental Health Perspectives, 125(7), 238–241.

    Article  Google Scholar 

  • Casey, J. A., Curriero, F. C., Cosgrove, S. E., Nachman, K. E., & Schwartz, B. S. (2013). High-density livestock operations, crop field application of manure, and risk of community-associated methicillin-resistant Staphylococcus aureus infection in Pennsylvania. JAMA Internal Medicine, 173(21), 1980–1990.

    Article  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention (CDC). (2013). Vital signs: Incidence and trends of infection with pathogens transmitted commonly through food – foodborne diseases active surveillance network, 10 U.S. Sites, 1996–2012. Retrieved February 2018, from http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6215a2.htm?s_cid=mm6215a2_w

  • Centers for Disease Control and Prevention (CDC). (2014). Foodborne disease active surveillance network. Retrieved January 2018, from http://www.cdc.gov/foodnet/trends/2014/number-of-salmonella-infections-by-serotype-2014.html

  • Centers for Disease Control and Prevention (CDC). (2018). Antibiotic resistance threats in the United States. Retrieved February 2018, from http://www.cdc.gov/drugresistance/threat-report-2013

  • Chen, W., Fang, T., Zhou, X., Zhang, D., Shi, X., & Shi, C. (2016). IncHI2 plasmids are predominant in antibiotic-resistant Salmonella isolates. Frontiers in Microbiology, 7, 1566.

    PubMed  PubMed Central  Google Scholar 

  • Chen, L., Zhang, J., Wang, J., Butaye, P., Kelly, P., Li, M., et al. (2018). Newly identified colistin resistance genes, mcr-4 and mcr-5, from upper and lower alimentary tract of pigs and poultry in China. PLoS One, 13(3), e0193957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook, M. E. (2004). Antibodies: Alternatives to antibiotics in improving growth and feed efficiency. Journal of Applied Poultry Research, 13(1), 106–119.

    Article  CAS  Google Scholar 

  • Cook, K. L., Netthisinghe, A. M. P., & Gilfillen, R. A. (2014). Detection of pathogens, indicators, and antibiotic resistance genes after land application of poultry litter. Journal of Environmental Quality, 43(5), 1546–1558.

    Article  CAS  PubMed  Google Scholar 

  • Cosby, D. E., Cox, N. A., Harrison, M. A., Wilson, J. L., Buhr, R. J., & Fedorka-Cray, P. J. (2015). Salmonella and antimicrobial resistance in broilers: A review. Journal of Applied Poultry Research, 24(3), 408–426.

    Article  CAS  Google Scholar 

  • Dall, C. (2017). Pan-resistant CRE reported in Nevada. Retrieved March 2018, from http://www.cidrap.umn.edu/news-perspective/2017/01/pan-resistant-cre-reported-nevada

  • Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433.

    Article  CAS  PubMed  Google Scholar 

  • Davies, M., & Meesaraganda, R. (2018). A game of chicken: How India’s poultry farms are spawning global superbugs. Retrieved April 2018, from https://www.thebureauinvestigates.com/stories/2018-01-30/a-game-of-chicken-how-indian-poultry-farming-is-creating-global-superbugs

  • Davies, M., & Walsh, T. R. (2018). A colistin crisis in India. Lancet Infectious Diseases, 18(3), 256–257.

    Google Scholar 

  • Dewey-Mattia, D., Manikonda, K., & Vieira, A. (2016). Surveillance for foodborne disease outbreaks–United States, 2014: Annual report. Retrieved March 2018, from https://stacks.cdc.gov/view/cdc/40019

  • Dhanarani, T. S., Shankar, C., Park, J., Dexilin, M., Kumar, R. R., & Thamaraiselvi, K. (2009). Study on acquisition of bacterial antibiotic resistance determinants in poultry litter. Poultry Science, 88(7), 1381–1387.

    Article  CAS  PubMed  Google Scholar 

  • Diarrassouba, F., Diarra, M. S., Bach, S., Delaquis, P., Pritchard, J., Topp, E., et al. (2007). Antibiotic resistance and virulence genes in commensal Escherichia coli and Salmonella isolates from commercial broiler chicken farms. Journal of Food Protection, 70(6), 1316–1327.

    Article  CAS  PubMed  Google Scholar 

  • Dolejska, M., Villa, L., Hasman, H., Hansen, L., & Carattoli, A. (2013). Characterization of IncN plasmids carrying bla CTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans. Journal of Antimicrobial Chemotherapy, 68(2), 333–339.

    Article  CAS  PubMed  Google Scholar 

  • Doumith, M., Godbole, G., Ashton, P., Larkin, L., Dallman, T., Day, M., et al. (2016). Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. Journal of Antimicrobial Chemotherapy, 71(8), 2300–2305.

    Article  CAS  PubMed  Google Scholar 

  • Dutil, L., Irwin, R., Finley, R., Ng, L. K., Avery, B., Boerlin, P., et al. (2010). Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerging Infectious Diseases, 16(1), 48–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutta, S. S. (2017). India launches strategy to curb antimicrobial resistance. BMJ, 357, j2049.

    Article  PubMed  Google Scholar 

  • Fernandes, M. R., Sellera, F. P., Esposito, F., Sabino, C. P., Cerdeira, L., & Lincopan, N. (2017). Colistin-resistant mcr-1-positive Escherichia coli on public beaches, an infectious threat emerging in recreational waters. Antimicrobial Agents and Chemotherapy, 61(7), e00234–e00217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2017). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857–2876.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, J., Rodríguez, I., Schmoger, S., Friese, A., Roesler, U., Helmuth, R., et al. (2012). Salmonella enterica subsp. enterica producing VIM-1 carbapenemase isolated from livestock farms. Journal of Antimicrobial Chemotherapy, 68(2), 478–480.

    Article  CAS  PubMed  Google Scholar 

  • Fluit, A. C. (2005). Towards more virulent and antibiotic-resistant Salmonella? FEMS Immunology and Medical Microbiology, 43(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Fluit, A. C., & Schmitz, F. J. (2004). Resistance integrons and super-integrons. Clinical Microbiology and Infection, 10(4), 272–288.

    Article  CAS  PubMed  Google Scholar 

  • Foley, S. L., Nayak, R., Hanning, I. B., Johnson, T. J., Han, J., & Ricke, S. C. (2011). Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Applied and Environmental Microbiology, 77(13), 4273–4279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Food Safety and Inspection Service (FSIS), United States Department of Agriculture (USDA). (2014). A year in review – 2014. Retrieved January 2018, from http://www.fsis.usda.gov/wps/wcm/connect/6f85bdf5-475a-4c15-8060-7d478ed1fd99/FY-2014-Year-in-Review.pdf?MOD=AJPERES

  • Food Safety and Inspection Service (FSIS), United States Department of Agriculture (USDA). (2015). The FSIS Salmonella action plan: A year one update. Retrieved January 2018, from http://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/foodborne-illness-and-disease/salmonella/sap-one-year

  • Food Safety and Inspection Service (FSIS), United States Department of Agriculture (USDA). (2017). Serotypes profile of Salmonella isolates from meat and poultry products, January 1998 through December 2011. Retrieved February 2018, from https://www.fsis.usda.gov/wps/wcm/connect/3866026a-582d-4f0e-a8ce-851b39c7390f/Salmonella-Serotype-Annual-2014.pdf?MOD=AJPERES

  • Founou, L. L., Founou, R. C., & Essack, S. Y. (2016). Antibiotic resistance in the food chain: A developing country-perspective. Frontiers in Microbiology, 7, 1881.

    Article  PubMed  PubMed Central  Google Scholar 

  • Furtula, V., Jackson, C. R., Farrell, E. G., Barrett, J. B., Hiott, L. M., & Chambers, P. A. (2013). Antimicrobial resistance in Enterococcus spp. isolated from environmental samples in an area of intensive poultry production. International Journal of Environmental Research and Public Health, 10(3), 1020–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, L., Hu, J., Zhang, X., Ma, R., Gao, J., Li, S., et al. (2014). Dissemination of ESBL-producing Escherichia coli of chicken origin to the nearby river water. Journal of Molecular Microbiology and Biotechnology, 24(4), 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Gao, R., Hu, Y., Li, Z., Sun, J., Wang, Q., Lin, J., et al. (2016). Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathogens, 12(11), e1005957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimont, P. A., & Weill, F. X. (2007). Antigenic formulae of the Salmonella serovars. WHO Collaborating Centre for Reference and Research on Salmonella, 9, 110–166.

    Google Scholar 

  • Guenther, S., Falgenhauer, L., Semmler, T., Imirzalioglu, C., Chakraborty, T., Roesler, U., et al. (2017). Environmental emission of multiresistant Escherichia coli carrying the colistin resistance gene mcr-1 from German swine farms. Journal of Antimicrobial Chemotherapy, 72(5), 1289–1292.

    Article  CAS  PubMed  Google Scholar 

  • Guibourdenche, M., Roggentin, P., Mikoleit, M., Fields, P. I., Bockemühl, J., Grimont, P. A., et al. (2010). Supplement 2003–2007 (No. 47) to the white-Kauffmann-Le minor scheme. Research in Microbiology, 161(1), 26–29.

    Article  PubMed  Google Scholar 

  • Helmuth, R. (2000). Antibiotic resistance in Salmonella. In C. Wray & A. Wray (Eds.), Salmonella in domestic animals (Vol. 1, pp. 89–106). New York: CABI Publishing.

    Chapter  Google Scholar 

  • Hembach, N., Schmid, F., Alexander, J., Hiller, C., Rogall, E. T., & Schwartz, T. (2017). Occurrence of the mcr-1 colistin resistance gene and other clinically relevant antibiotic resistance genes in microbial populations at different municipal wastewater treatment plants in Germany. Frontiers in Microbiology, 8, 1282–1292.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hribar, C., & Schultz, M. (2010). Understanding concentrated animal feeding operations and their impact on communities. Bowling Green, OH: National Association of Local Boards of Health. Retrieved February, 18, 2013.

    Google Scholar 

  • Hruby, C. E., Soupir, M. L., Moorman, T. B., Pederson, C., & Kanwar, R. (2018). Salmonella and fecal indicator bacteria survival in soils amended with poultry manure. Water, Air, & Soil Pollution, 229(2), 32–40.

    Article  CAS  Google Scholar 

  • Humphrey, T. J., Jørgensen, F., Frost, J. A., Wadda, H., Domingue, G., Elviss, N. C., et al. (2005). Prevalence and subtypes of ciprofloxacin-resistant Campylobacter spp. in commercial poultry flocks before, during, and after treatment with fluoroquinolones. Antimicrobial Agents and Chemotherapy, 49(2), 690–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hur, J., Jawale, C., & Lee, J. H. (2012). Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Research International, 45(2), 819–830.

    Article  CAS  Google Scholar 

  • Interagency Food Safety Analytics Collaboration (IFSAC) Project. (2015). Estimates for Salmonella, Escherichia coli O157 (E. coli O157), Listeria monocytogenes (Lm), and Campylobacter using Outbreak Surveillance Data. Retrieved February 2018, from http://www.cdc.gov/foodsafety/pdfs/ifsac-project-report-508c.pdf

  • Jackson, B. R., Griffin, P. M., Cole, D., Walsh, K. A., & Chai, S. J. (2013). Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998–2008. Emerging Infectious Diseases, 19(8), 1239–1244.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keelara, S., Scott, H. M., Morrow, W. M., Gebreyes, W. A., Correa, M., Nayak, R., et al. (2013). Longitudinal study of distributions of similar antimicrobial-resistant Salmonella serovars in pigs and their environment in two distinct swine production systems. Applied and Environmental Microbiology, 79(17), 5167–5178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kniel, K. E., Kumar, D., & Thakur, S. (2018). Understanding the complexities of food safety using a “one health” approach. Microbiology Spectrum, 6(1), PFS-0021-2017.

    Article  Google Scholar 

  • Kumar, D., Pornsukarom, S., Sivaraman, G. K., & Thakur, S. (2018). Environmental dissemination of multidrug methicillin-resistant Staphylococcus sciuri after application of manure from commercial swine production systems. Foodborne Pathogens and Disease, 15(4), 210–217.

    Article  CAS  PubMed  Google Scholar 

  • Landers, T. F., Cohen, B., Wittum, T. E., & Larson, E. L. (2012). A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Reports, 127(1), 4–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, M. D., Sanchez, S., Zimmer, M., Idris, U., Berrang, M. E., & McDermott, P. F. (2002). Class 1 integron-associated tobramycin-gentamicin resistance in Campylobacter jejuni isolated from the broiler chicken house environment. Antimicrobial Agents and Chemotherapy, 46(11), 3660–3664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lertworapreecha, M., Sutthimusik, S., & Tontikapong, K. (2012). Antimicrobial resistance in Salmonella enterica isolated from pork, chicken, and vegetables in southern Thailand. Jundishapur Journal of Microbiology, 6(1), 36–41.

    Article  Google Scholar 

  • Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10(12 Suppl), S122.

    Article  CAS  PubMed  Google Scholar 

  • Li, R., Lai, J., Wang, Y., Liu, S., Li, Y., Liu, K., et al. (2013). Prevalence and characterization of Salmonella species isolated from pigs, ducks and chickens in Sichuan Province, China. International Journal of Food Microbiology, 163(1), 14–18.

    Article  PubMed  Google Scholar 

  • Liljebjelke, K. A., Hofacre, C. L., White, D. G., Ayers, S., Lee, M. D., & Maurer, J. J. (2017). Diversity of antimicrobial resistance phenotypes in Salmonella isolated from commercial poultry farms. Frontiers in Veterinary Science, 4, 96–104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161–168.

    Article  CAS  PubMed  Google Scholar 

  • Marti, R., Scott, A., Tien, Y. C., Murray, R., Sabourin, L., Zhang, Y., et al. (2013). Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Applied and Environmental Microbiology, 79(18), 5701–5709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattiello, S. P., Drescher, G., Barth, V. C., Ferreira, C. A., & Oliveira, S. D. (2015). Characterization of antimicrobial resistance in Salmonella enterica strains isolated from Brazilian poultry production. Antonie Van Leeuwenhoek, 108(5), 1227–1238.

    Article  CAS  PubMed  Google Scholar 

  • McCollister, B., Kotter, C. V., Frank, D. N., Washburn, T., & Jobling, M. G. (2016). Whole-genome sequencing identifies in vivo acquisition of a blaCTX-M-27-carrying IncFII transmissible plasmid as the cause of ceftriaxone treatment failure for an invasive Salmonella enterica serovar typhimurium infection. Antimicrobial Agents and Chemotherapy, 60(12), 7224–7235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDermott, P. F., Bodeis, S. M., English, L. L., White, D. G., Walker, R. D., Zhao, S., et al. (2002). Ciprofloxacin resistance in Campylobacter jejuni evolves rapidly in chickens treated with fluoroquinolones. The Journal of Infectious Diseases, 185(6), 837–840.

    Article  CAS  PubMed  Google Scholar 

  • Mollenkopf, D. F., Stull, J. W., Mathys, D. A., Bowman, A. S., Feicht, S. M., Grooters, S. V., et al. (2017). Carbapenemase-producing Enterobacteriaceae recovered from the environment of a swine farrow-to-finish operation in the United States. Antimicrobial Agents and Chemotherapy, 61(2), e01298–e01216.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulvey, M. R., Boyd, D. A., Olson, A. B., Doublet, B., & Cloeckaert, A. (2006). The genetics of Salmonella genomic island 1. Microbes and Infection, 8(7), 1915–1922.

    Article  CAS  PubMed  Google Scholar 

  • Nandi, S., Maurer, J. J., Hofacre, C., & Summers, A. O. (2004). Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proceedings of the National Academy of Sciences, 101(18), 7118–7122.

    Article  CAS  Google Scholar 

  • Nhung, N. T., Cuong, N. V., Thwaites, G., & Carrique-Mas, J. (2016). Antimicrobial usage and antimicrobial resistance in animal production in Southeast Asia: A review. Antibiotics, 5(4), 37–45.

    Article  CAS  PubMed Central  Google Scholar 

  • Ovejero, C. M., Delgado-Blas, J. F., Calero-Caceres, W., Muniesa, M., & Gonzalez-Zorn, B. (2017). Spread of mcr-1-carrying Enterobacteriaceae in sewage water from Spain. Journal of Antimicrobial Chemotherapy, 72(4), 1050–1053.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padungtod, P., & Kaneene, J. B. (2006). Salmonella in food animals and humans in northern Thailand. International Journal of Food Microbiology, 108(3), 346–354.

    PubMed  Google Scholar 

  • Papadopoulos, T., Petridou, E., Zdragas, A., Nair, S., Peters, T., de Pinna, E., et al. (2015). Phenotypic and molecular characterization of multidrug-resistant Salmonella enterica serovar Hadar in Greece, from 2007 to 2010. Clinical Microbiology and Infection, 21(2), 149–1e1.

    Article  PubMed  Google Scholar 

  • Pornsukarom, S., & Thakur, S. (2017). Horizontal dissemination of antimicrobial resistance determinants in multiple Salmonella serotypes following isolation from the commercial swine operation environment after manure application. Applied and Environmental Microbiology, 83(20), e01503–e01517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinsky, J. L., Nadimpalli, M., Wing, S., Hall, D., Baron, D., Price, L. B., et al. (2013). Livestock-associated methicillin and multidrug resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina. PLoS One, 8(7), e67641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, R. R., Hota, B., Ahmad, I., Scott, R. D., Foster, S. D., Abbasi, F., et al. (2009). Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: Implications for antibiotic stewardship. Clinical Infectious Diseases, 49(8), 1175–1184.

    Article  PubMed  Google Scholar 

  • Rossi, F., Girardello, R., Morais, C., Cury, A. P., Martins, L. F., da Silva, A. M., et al. (2017). Plasmid-mediated mcr-1 in carbapenem-susceptible Escherichia coli ST156 causing a blood infection: An unnoticeable spread of colistin resistance in Brazil? Clinics, 72(10), 642–644.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouger, A., Tresse, O., & Zagorec, M. (2017). Bacterial contaminants of poultry meat: Sources, species, and dynamics. Microorganisms, 5(3), 50–58.

    Article  CAS  PubMed Central  Google Scholar 

  • Shah, D. H., Paul, N. C., Sischo, W. C., Crespo, R., & Guard, J. (2017). Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poultry Science, 96(3), 687–702.

    CAS  PubMed  Google Scholar 

  • Sims, L. D. (2008, November). Risks associated with poultry production systems. In International conference poultry in the twenty-first century (pp. 19–23).

    Google Scholar 

  • Singer, R. S., & Hofacre, C. L. (2006). Potential impacts of antibiotic use in poultry production. Avian Diseases, 50(2), 161–172.

    Article  PubMed  Google Scholar 

  • Sinwat, N., Angkittitrakul, S., & Chuanchuen, R. (2015). Characterization of antimicrobial resistance in Salmonella enterica isolated from pork, chicken meat, and humans in Northeastern Thailand. Foodborne Pathogens and Disease, 12(9), 759–765.

    Article  CAS  PubMed  Google Scholar 

  • Skariyachan, S., Setlur, A. S., & Naik, S. Y. (2016). Evolution and prevalence of multidrug resistance among foodborne pathogens. In Food borne pathogens and antibiotic resistance. Hoboken, NJ: Wiley.

    Google Scholar 

  • Smith, K. E., Besser, J. M., Hedberg, C. W., Leano, F. T., Bender, J. B., Wicklund, J. H., et al. (1999). Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992–1998. New England Journal of Medicine, 340(20), 1525–1532.

    Article  CAS  PubMed  Google Scholar 

  • Thai, T. H., & Yamaguchi, R. (2012). Molecular characterization of antibiotic-resistant Salmonella isolates from retail meat from markets in Northern Vietnam. Journal of Food Protection, 75(9), 1709–1714.

    Article  CAS  PubMed  Google Scholar 

  • Thai, T. H., Hirai, T., Lan, N. T., & Yamaguchi, R. (2012). Antibiotic resistance profiles of Salmonella serovars isolated from retail pork and chicken meat in North Vietnam. International Journal of Food Microbiology, 156(2), 147–151.

    Article  CAS  PubMed  Google Scholar 

  • Thanner, S., Drissner, D., & Walsh, F. (2016). Antimicrobial resistance in agriculture. MBio, 7(2), e02227–e02215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Pew Charitable Trusts. (2013). The business of broilers: Hidden costs of putting a chicken on every grill. Retrieved March 2018, from http://www.pewtrusts.org/en/research-and-analysis/reports/2013/12/20/the-business-of-broilers-hidden-costs-of-putting-a-chicken-on-every-grill

  • Unicomb, L., Ferguson, J., Riley, T. V., & Collignon, P. (2003). Fluoroquinolone resistance in Campylobacter absent from isolates, Australia. Emerging Infectious Diseases, 9(11), 1482–1483.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., et al. (2014). Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742–750.

    Article  PubMed  Google Scholar 

  • Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., et al. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654.

    Article  CAS  Google Scholar 

  • Van, T. T. H., Nguyen, H. N. K., Smooker, P. M., & Coloe, P. J. (2012). The antibiotic resistance characteristics of non-typhoidal Salmonella enterica isolated from food-producing animals, retail meat and humans in South East Asia. International Journal of Food Microbiology, 154(3), 98–106.

    Article  CAS  PubMed  Google Scholar 

  • Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics, 40(4), 277–283.

    PubMed  PubMed Central  Google Scholar 

  • von Wintersdorff, C. J., Penders, J., van Niekerk, J. M., Mills, N. D., Majumder, S., van Alphen, L. B., et al. (2016). Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology, 7, 173.

    Google Scholar 

  • Walsh, C. (2010). The problem of antimicrobial resistance in the food chain. Retrieved April 2018, from https://arrow.dit.ie/cgi/viewcontent.cgi?article=1007&context=schfsehrep

  • Wang, R., Dorp, L., Shaw, L. P., Bradley, P., Wang, Q., Wang, X., et al. (2018). The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nature Communications, 9(1), 1179. https://doi.org/10.1038/s41467-018-03205-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnes, S. L., Highmore, C. J., & Keevil, C. W. (2012). Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: Implications for public health. MBio, 3(6), e00489–e00412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellington, E. M., Boxall, A. B., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., et al. (2013). The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. The Lancet Infectious Diseases, 13(2), 155–165.

    Article  CAS  PubMed  Google Scholar 

  • White, D. G., Zhao, S., Simjee, S., Wagner, D. D., & McDermott, P. F. (2002). Antimicrobial resistance of foodborne pathogens. Microbes and Infection, 4(4), 405–412.

    Article  CAS  PubMed  Google Scholar 

  • World Economic Forum. (2014). Global risks 2014, ninth edition. Retrieved February 2018, from http://www3.weforum.org/docs/WEF_GlobalRisks_Report_2014.pdf

  • Yang, B., Cui, Y., Shi, C., Wang, J., Xia, X., Xi, M., et al. (2014). Counts, serotypes, and antimicrobial resistance of Salmonella isolates on retail raw poultry in the People’s Republic of China. Journal of Food Protection, 77(6), 894–902.

    Article  PubMed  Google Scholar 

  • Yang, Y. Q., Li, Y. X., Lei, C. W., Zhang, A. Y., & Wang, H. N. (2018). Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 73, 1791.

    Article  PubMed  Google Scholar 

  • Yildirim, Y., Gonulalan, Z., Pamuk, S., & Ertas, N. (2011). Incidence and antibiotic resistance of Salmonella spp. on raw chicken carcasses. Food Research International, 44(3), 725–728.

    Article  CAS  Google Scholar 

  • Young, I., Rajić, A., Wilhelm, B. J., Waddell, L., Parker, S., & McEwen, S. A. (2009). Comparison of the prevalence of bacterial enteropathogens, potentially zoonotic bacteria and bacterial resistance to antimicrobials in organic and conventional poultry, swine and beef production: A systematic review and meta-analysis. Epidemiology and Infection, 137(9), 1217–1232.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y. G., Johnson, T. A., Su, J. Q., Qiao, M., Guo, G. X., Stedtfeld, R. D., et al. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences, 110(9), 3435–3440.

    Article  CAS  Google Scholar 

  • Zurfuh, K., Poirel, L., Nordmann, P., Nüesch-Inderbinen, M., Hächler, H., & Stephan, R. (2016). Occurrence of the plasmid-borne mcr-1 colistin resistance gene in extended-spectrum-β-lactamase-producing Enterobacteriaceae in river water and imported vegetable samples in Switzerland. Antimicrobial Agents and Chemotherapy, 60(4), 2594–2595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, D., Pornsukarom, S., Thakur, S. (2019). Antibiotic Usage in Poultry Production and Antimicrobial-Resistant Salmonella in Poultry. In: Venkitanarayanan, K., Thakur, S., Ricke, S. (eds) Food Safety in Poultry Meat Production. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-030-05011-5_3

Download citation

Publish with us

Policies and ethics